Abstract
In this paper, we study a practical space-time video super-resolution (STVSR) problem which aims at generating a high-framerate high-resolution sharp video from a low-framerate low-resolution blurry video. Such problem often occurs when recording a fast dynamic event with a low-framerate and low-resolution camera, and the captured video would suffer from three typical issues: i) motion blur occurs due to object/camera motions during exposure time; ii) motion aliasing is unavoidable when the event temporal frequency exceeds the Nyquist limit of temporal sampling; iii) high-frequency details are lost because of the low spatial sampling rate. These issues can be alleviated by a cascade of three separate sub-tasks, including video deblurring, frame interpolation, and super-resolution, which, however, would fail to capture the spatial and temporal correlations among video sequences. To address this, we propose an interpretable STVSR framework by leveraging both model-based and learning-based methods. Specifically, we formulate STVSR as a joint video deblurring, frame interpolation, and super-resolution problem, and solve it as two sub-problems in an alternate way. For the first sub-problem, we derive an interpretable analytical solution and use it as a Fourier data transform layer. Then, we propose a recurrent video enhancement layer for the second sub-problem to further recover high-frequency details. Extensive experiments demonstrate the superiority of our method in terms of quantitative metrics and visual quality.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Please see the detailed proof in the supplementary materials.
References
Afonso, M.V., Bioucas-Dias, J.M., Figueiredo, M.A.: Fast image recovery using variable splitting and constrained optimization. IEEE Trans. Image Process. 19(9), 2345–2356 (2010)
Argaw, D.M., Kim, J., Rameau, F., Kweon, I.S.: Motion-blurred video interpolation and extrapolation. In: AAAI Conference on Artificial Intelligence, pp. 901–910 (2021)
Bao, W., Lai, W.S., Ma, C., Zhang, X., Gao, Z., Yang, M.H.: Depth-aware video frame interpolation. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 3703–3712 (2019)
Bao, W., Lai, W.S., Zhang, X., Gao, Z., Yang, M.H.: MEMC-Net: motion estimation and motion compensation driven neural network for video interpolation and enhancement. IEEE Trans. Pattern Anal. Mach. Intell. 43(3), 933–948 (2019)
Caballero, J., et al.: Real-time video super-resolution with spatio-temporal networks and motion compensation. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 4778–4787 (2017)
Chan, K.C., Wang, X., Yu, K., Dong, C., Loy, C.C.: BasicVSR: the search for essential components in video super-resolution and beyond. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 4947–4956 (2021)
Chan, K.C., Zhou, S., Xu, X., Loy, C.C.: BasicVSR++: improving video super-resolution with enhanced propagation and alignment. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 5972–5981 (2022)
Charbonnier, P., Blanc-Feraud, L., Aubert, G., Barlaud, M.: Two deterministic half-quadratic regularization algorithms for computed imaging. In: International Conference on Image Processing, vol. 2, pp. 168–172 (1994)
Chiche, B.N., Frontera-Pons, J., Woiselle, A., Starck, J.L.: Deep unrolled network for video super-resolution. In: International Conference on Image Processing Theory, Tools and Applications, pp. 1–6 (2020)
Gilavert, C., Moussaoui, S., Idier, J.: Efficient Gaussian sampling for solving large-scale inverse problems using MCMC. IEEE Trans. Sig. Process. 63(1), 70–80 (2014)
Gupta, A., Aich, A., Roy-Chowdhury, A.K.: ALANET: adaptive latent attention network forjoint video deblurring and interpolation. arXiv preprint arXiv:2009.01005 (2020)
Haris, M., Shakhnarovich, G., Ukita, N.: Recurrent back-projection network for video super-resolution. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 3897–3906 (2019)
Hyun Kim, T., Mu Lee, K.: Generalized video deblurring for dynamic scenes. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 5426–5434 (2015)
Hyun Kim, T., Mu Lee, K., Scholkopf, B., Hirsch, M.: Online video deblurring via dynamic temporal blending network. In: IEEE International Conference on Computer Vision, pp. 4038–4047 (2017)
Jiang, H., Sun, D., Jampani, V., Yang, M.H., Learned-Miller, E., Kautz, J.: Super SloMo: high quality estimation of multiple intermediate frames for video interpolation. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 9000–9008 (2018)
Jin, M., Meishvili, G., Favaro, P.: Learning to extract a video sequence from a single motion-blurred image. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 6334–6342 (2018)
Jo, Y., Oh, S.W., Kang, J., Kim, S.J.: Deep video super-resolution network using dynamic upsampling filters without explicit motion compensation. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 3224–3232 (2018)
Kim, T.H., Nah, S., Lee, K.M.: Dynamic video deblurring using a locally adaptive blur model. IEEE Trans. Pattern Anal. Mach. Intell. 40(10), 2374–2387 (2017)
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: International Conference on Learning Representations (2015)
Kupyn, O., Budzan, V., Mykhailych, M., Mishkin, D., Matas, J.: DeblurGAN: blind motion deblurring using conditional adversarial networks. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 8183–8192 (2018)
Liang, J., et al.: VRT: a video restoration transformer. arXiv preprint arXiv:2201.12288 (2022)
Liang, J., Cao, J., Sun, G., Zhang, K., Van Gool, L., Timofte, R.: Swinir: image restoration using swin transformer. In: IEEE International Conference on Computer Vision Workshops, pp. 1833–1844 (2021)
Liang, J., et al.: Recurrent video restoration transformer with guided deformable attention. arXiv preprint arXiv:2206.02146 (2022)
Liang, J., Sun, G., Zhang, K., Van Gool, L., Timofte, R.: Mutual affine network for spatially variant kernel estimation in blind image super-resolution. In: IEEE Conference on International Conference on Computer Vision, pp. 4096–4105 (2021)
Liu, C., Sun, D.: On Bayesian adaptive video super resolution. IEEE Trans. Pattern Anal. Mach. Intell. 36(2), 346–360 (2013)
Liu, C., Sun, D.: On Bayesian adaptive video super resolution. IEEE Transactions on Pattern Anal. Mach. Intell. 36(2), 346–360 (2013)
Liu, Z., Yeh, R.A., Tang, X., Liu, Y., Agarwala, A.: Video frame synthesis using deep voxel flow. In: IEEE International Conference on Computer Vision, pp. 4463–4471 (2017)
Long, G., Kneip, L., Alvarez, J.M., Li, H., Zhang, X., Yu, Q.: Learning image matching by simply watching video. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9910, pp. 434–450. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46466-4_26
Loshchilov, I., Hutter, F.: SGDR: stochastic gradient descent with warm restarts. arXiv preprint arXiv:1608.03983 (2016)
Meyer, S., Wang, O., Zimmer, H., Grosse, M., Sorkine-Hornung, A.: Phase-based frame interpolation for video. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1410–1418 (2015)
Mudenagudi, U., Banerjee, S., Kalra, P.K.: Space-time super-resolution using graph-cut optimization. IEEE Trans. Pattern Anal. Mach. Intell. 33(5), 995–1008 (2010)
Nah, S., et al.: NTIRE 2019 challenge on video deblurring and super-resolution: dataset and study. In: IEEE Conference on Computer Vision and Pattern Recognition Workshops (2019)
Nah, S., Hyun Kim, T., Mu Lee, K.: Deep multi-scale convolutional neural network for dynamic scene deblurring. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 3883–3891 (2017)
Nah, S., Son, S., Lee, K.M.: Recurrent neural networks with intra-frame iterations for video deblurring. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 8102–8111 (2019)
Niklaus, S., Liu, F.: Context-aware synthesis for video frame interpolation. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1701–1710 (2018)
Oh, J., Kim, M.: DeMFI: deep joint deblurring and multi-frame interpolation with flow-guided attentive correlation and recursive boosting. arXiv preprint arXiv:2111.09985 (2021)
Pan, J., Bai, H., Dong, J., Zhang, J., Tang, J.: Deep blind video super-resolution. In: IEEE International Conference on Computer Vision, pp. 4811–4820 (2021)
Pan, J., Bai, H., Tang, J.: Cascaded deep video deblurring using temporal sharpness prior. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 3043–3051 (2020)
Pollak Zuckerman, L., Naor, E., Pisha, G., Bagon, S., Irani, M.: Across scales & across dimensions: temporal super-resolution using deep internal learning. arXiv e-prints pp. arXiv-2003 (2020)
Robinson, M.D., Toth, C.A., Lo, J.Y., Farsiu, S.: Efficient Fourier-wavelet super-resolution. IEEE Trans. Image Process. 19(10), 2669–2681 (2010)
Sajjadi, M.S., Vemulapalli, R., Brown, M.: Frame-recurrent video super-resolution. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 6626–6634 (2018)
Shahar, O., Faktor, A., Irani, M.: Space-time super-resolution from a single video. IEEE (2011)
Shechtman, E., Caspi, Y., Irani, M.: Increasing space-time resolution in video. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2350, pp. 753–768. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-47969-4_50
Shen, W., Bao, W., Zhai, G., Chen, L., Min, X., Gao, Z.: Blurry video frame interpolation. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 5114–5123 (2020)
Šroubek, F., Kamenickỳ, J., Milanfar, P.: Superfast superresolution. In: IEEE International Conference on Image Processing, pp. 1153–1156 (2011)
Su, S., Delbracio, M., Wang, J., Sapiro, G., Heidrich, W., Wang, O.: Deep video deblurring for hand-held cameras. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1279–1288 (2017)
Takeda, H., Beek, P.v., Milanfar, P.: Spatiotemporal video upscaling using motion-assisted steering kernel (mask) regression. In: Mrak, M., Grgic, M., Kunt, M. (eds.) High-Quality Visual Experience. Signals and Communication Technology, pp. 245–274. Springer (2010). https://doi.org/10.1007/978-3-642-12802-8_10
Tao, X., Gao, H., Liao, R., Wang, J., Jia, J.: Detail-revealing deep video super-resolution. In: IEEE International Conference on Computer Vision, pp. 4472–4480 (2017)
Tao, X., Gao, H., Shen, X., Wang, J., Jia, J.: Scale-recurrent network for deep image deblurring. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 8174–8182 (2018)
Telleen, J., et al.: Synthetic shutter speed imaging. In: Computer Graphics Forum, vol. 26, pp. 591–598 (2007)
Tian, Y., Zhang, Y., Fu, Y., Xu, C.: TDAN: temporally-deformable alignment network for video super-resolution. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 3360–3369 (2020)
Wang, L., Guo, Y., Lin, Z., Deng, X., An, W.: Learning for video super-resolution through HR optical flow estimation. In: Asian Conference on Computer Vision, pp. 514–529 (2018)
Wang, X., Chan, K.C., Yu, K., Dong, C., Change Loy, C.: EDVR: video restoration with enhanced deformable convolutional networks. In: IEEE Conference on Computer Vision and Pattern Recognition Workshops (2019)
Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)
Xiang, X., Tian, Y., Zhang, Y., Fu, Y., Allebach, J.P., Xu, C.: Zooming slow-mo: fast and accurate one-stage space-time video super-resolution. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 3370–3379 (2020)
Xiao, Z., Xiong, Z., Fu, X., Liu, D., Zha, Z.J.: Space-time video super-resolution using temporal profiles. In: ACM International Conference on Multimedia, pp. 664–672 (2020)
Xue, T., Chen, B., Wu, J., Wei, D., Freeman, W.T.: Video enhancement with task-oriented flow. Int. J. Comput. Vis. 127(8), 1106–1125 (2019)
Zamir, A.R., et al.: Feedback networks. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1308–1317 (2017)
Zhang, K., Gool, L.V., Timofte, R.: Deep unfolding network for image super-resolution. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 3217–3226 (2020)
Zhang, K., Luo, W., Zhong, Y., Ma, L., Liu, W., Li, H.: Adversarial spatio-temporal learning for video deblurring. IEEE Trans. Image Process. 28(1), 291–301 (2018)
Zhao, N., Wei, Q., Basarab, A., Dobigeon, N., Kouamé, D., Tourneret, J.Y.: Fast single image super-resolution using a new analytical solution for l2–l2 problems. IEEE Trans. Image Process. 25(8), 3683–3697 (2016)
Zhou, S., Zhang, J., Pan, J., Xie, H., Zuo, W., Ren, J.: Spatio-temporal filter adaptive network for video deblurring. In: IEEE International Conference on Computer Vision, pp. 2482–2491 (2019)
Acknowledgements
This work was partly supported by Huawei Fund and the ETH Zürich Fund (OK).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Cao, J. et al. (2022). Towards Interpretable Video Super-Resolution via Alternating Optimization. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13678. Springer, Cham. https://doi.org/10.1007/978-3-031-19797-0_23
Download citation
DOI: https://doi.org/10.1007/978-3-031-19797-0_23
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-19796-3
Online ISBN: 978-3-031-19797-0
eBook Packages: Computer ScienceComputer Science (R0)