Skip to main content

Learning Shadow Correspondence for Video Shadow Detection

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Abstract

Video shadow detection aims to generate consistent shadow predictions among video frames. However, the current approaches suffer from inconsistent shadow predictions across frames, especially when the illumination and background textures change in a video. We make an observation that the inconsistent predictions are caused by the shadow feature inconsistency, i.e., the features of the same shadow regions show dissimilar proprieties among the nearby frames. In this paper, we present a novel Shadow-Consistent Correspondence method (SC-Cor) to enhance pixel-wise similarity of the specific shadow regions across frames for video shadow detection. Our proposed SC-Cor has three main advantages. Firstly, without requiring the dense pixel-to-pixel correspondence labels, SC-Cor can learn the pixel-wise correspondence across frames in a weakly-supervised manner. Secondly, SC-Cor considers intra-shadow separability, which is robust to the variant textures and illuminations in videos. Finally, SC-Cor is a plug-and-play module that can be easily integrated into existing shadow detectors with no extra computational cost. We further design a new evaluation metric to evaluate the temporal stability of the video shadow detection results. Experimental results show that SC-Cor outperforms the prior state-of-the-art method, by 6.51% on IoU and 3.35% on the newly introduced temporal stability metric. Code is available at https://github.com/xmed-lab/SC-Cor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Benedek, C., Szirányi, T.: Bayesian foreground and shadow detection in uncertain frame rate surveillance videos. IEEE Trans. Image Process. 17(4), 608–621 (2008)

    Article  MathSciNet  Google Scholar 

  2. Berman, M., Triki, A.R., Blaschko, M.B.: The lovász-softmax loss: a tractable surrogate for the optimization of the intersection-over-union measure in neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4413–4421 (2018)

    Google Scholar 

  3. Bian, J., Lin, W.Y., Matsushita, Y., Yeung, S.K., Nguyen, T.D., Cheng, M.M.: GMS: grid-based motion statistics for fast, ultra-robust feature correspondence. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4181–4190 (2017)

    Google Scholar 

  4. Caron, M., Misra, I., Mairal, J., Goyal, P., Bojanowski, P., Joulin, A.: Unsupervised learning of visual features by contrasting cluster assignments. Adv. Neural. Inf. Process. Syst. 33, 9912–9924 (2020)

    Google Scholar 

  5. Chen, X., Fan, H., Girshick, R., He, K.: Improved baselines with momentum contrastive learning. arXiv preprint arXiv:2003.04297 (2020)

  6. Chen, X., He, K.: Exploring simple siamese representation learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 15750–15758 (2021)

    Google Scholar 

  7. Chen, Z., et al.: Triple-cooperative video shadow detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2715–2724 (2021)

    Google Scholar 

  8. Chen, Z., Zhu, L., Wan, L., Wang, S., Feng, W., Heng, P.A.: A multi-task mean teacher for semi-supervised shadow detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5611–5620 (2020)

    Google Scholar 

  9. Ding, B., Long, C., Zhang, L., Xiao, C.: Argan: attentive recurrent generative adversarial network for shadow detection and removal. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) (2019)

    Google Scholar 

  10. Ding, X., Liu, Z., Li, X.: Free lunch for surgical video understanding by distilling self-supervisions. arXiv preprint arXiv:2205.09292 (2022)

  11. Ding, X., et al.: Support-set based cross-supervision for video grounding. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 11573–11582 (2021)

    Google Scholar 

  12. Ding, X., et al.: Exploring language hierarchy for video grounding. IEEE Trans. Image Process. 31, 4693–4706 (2022)

    Article  Google Scholar 

  13. He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised visual representation learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9729–9738 (2020)

    Google Scholar 

  14. Hou, Q., Cheng, M.M., Hu, X., Borji, A., Tu, Z., Torr, P.H.S.: Deeply supervised salient object detection with short connections. IEEE Trans. Pattern Anal. Mach. Intell. 41(4), 815–828 (2019). https://doi.org/10.1109/TPAMI.2018.2815688

    Article  Google Scholar 

  15. Hu, S., Le, H., Samaras, D.: Temporal feature warping for video shadow detection. arXiv preprint arXiv:2107.14287 (2021)

  16. Hu, X., Fu, C.W., Zhu, L., Qin, J., Heng, P.A.: Direction-aware spatial context features for shadow detection and removal. IEEE Trans. Pattern Anal. Mach. Intell. 42(11), 2795–2808 (2020)

    Article  Google Scholar 

  17. Hu, X., Wang, T., Fu, C.W., Jiang, Y., Wang, Q., Heng, P.A.: Revisiting shadow detection: a new benchmark dataset for complex world. IEEE Trans. Image Process. 30, 1925–1934 (2021). https://doi.org/10.1109/TIP.2021.3049331

    Article  Google Scholar 

  18. Hu, X., Zhu, L., Fu, C.W., Qin, J., Heng, P.A.: Direction-aware spatial context features for shadow detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7454–7462 (2018)

    Google Scholar 

  19. Jacques, J.C.S., Jung, C.R., Musse, S.R.: Background subtraction and shadow detection in grayscale video sequences. In: XVIII Brazilian Symposium on Computer Graphics and Image Processing (SIBGRAPI 2005), pp. 189–196. IEEE (2005)

    Google Scholar 

  20. Jiang, W., Trulls, E., Hosang, J., Tagliasacchi, A., Yi, K.M.: COTR: correspondence transformer for matching across images. arXiv preprint arXiv:2103.14167 (2021)

  21. Junejo, I.N., Foroosh, H.: Estimating geo-temporal location of stationary cameras using shadow trajectories. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008. LNCS, vol. 5302, pp. 318–331. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88682-2_25

    Chapter  Google Scholar 

  22. Karsch, K., Hedau, V., Forsyth, D., Hoiem, D.: Rendering synthetic objects into legacy photographs. ACM Trans. Graph. (TOG) 30(6), 1–12 (2011)

    Article  Google Scholar 

  23. Khan, S.H., Bennamoun, M., Sohel, F., Togneri, R.: Automatic feature learning for robust shadow detection. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1939–1946. IEEE (2014)

    Google Scholar 

  24. Khosla, P., et al.: Supervised contrastive learning. Adv. Neural. Inf. Process. Syst. 33, 18661–18673 (2020)

    Google Scholar 

  25. Lai, W.S., Huang, J.B., Wang, O., Shechtman, E., Yumer, E., Yang, M.H.: Learning blind video temporal consistency. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 170–185 (2018)

    Google Scholar 

  26. Lalonde, J.F., Efros, A.A., Narasimhan, S.G.: Estimating natural illumination from a single outdoor image. In: 2009 IEEE 12th International Conference on Computer Vision, pp. 183–190. IEEE (2009)

    Google Scholar 

  27. Le, H., Vicente, T.F.Y., Nguyen, V., Hoai, M., Samaras, D.: A+D Net: training a shadow detector with adversarial shadow attenuation. In: Proceedings of the European Conference on Computer Vision (ECCV), September 2018

    Google Scholar 

  28. Li, H., Wang, N., Ding, X., Yang, X., Gao, X.: Adaptively learning facial expression representation via CF labels and distillation. IEEE Trans. Image Process. 30, 2016–2028 (2021)

    Article  Google Scholar 

  29. Lin, T., Dollar, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Los Alamitos, CA, USA, pp. 936–944. IEEE Computer Society, July 2017. https://doi.org/10.1109/CVPR.2017.106

  30. Liu, L., et al.: Learning by analogy: reliable supervision from transformations for unsupervised optical flow estimation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6489–6498 (2020)

    Google Scholar 

  31. Melekhov, I., Tiulpin, A., Sattler, T., Pollefeys, M., Rahtu, E., Kannala, J.: DGC-Net: dense geometric correspondence network. In: 2019 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 1034–1042. IEEE (2019)

    Google Scholar 

  32. Nadimi, S., Bhanu, B.: Physical models for moving shadow and object detection in video. IEEE Trans. Pattern Anal. Mach. Intell. 26(8), 1079–1087 (2004)

    Article  Google Scholar 

  33. Nguyen, V., Vicente, T.F.Y., Zhao, M., Hoai, M., Samaras, D.: Shadow detection with conditional generative adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4510–4518 (2017)

    Google Scholar 

  34. Oh, S.W., Lee, J.Y., Xu, N., Kim, S.J.: Video object segmentation using space-time memory networks. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), October 2019

    Google Scholar 

  35. Okabe, T., Sato, I., Sato, Y.: Attached shadow coding: estimating surface normals from shadows under unknown reflectance and lighting conditions. In: 2009 IEEE 12th International Conference on Computer Vision, pp. 1693–1700. IEEE (2009)

    Google Scholar 

  36. Panagopoulos, A., Samaras, D., Paragios, N.: Robust shadow and illumination estimation using a mixture model. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 651–658. IEEE (2009)

    Google Scholar 

  37. Sanin, A., Sanderson, C., Lovell, B.C.: Shadow detection: a survey and comparative evaluation of recent methods. Pattern Recogn. 45(4), 1684–1695 (2012)

    Article  Google Scholar 

  38. Santurkar, S., Tsipras, D., Ilyas, A., Madry, A.: How does batch normalization help optimization? In: Proceedings of the 32nd International Conference on Neural Information Processing Systems, pp. 2488–2498 (2018)

    Google Scholar 

  39. Sarlin, P.E., DeTone, D., Malisiewicz, T., Rabinovich, A.: Superglue: learning feature matching with graph neural networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4938–4947 (2020)

    Google Scholar 

  40. Shen, L., Chua, T.W., Leman, K.: Shadow optimization from structured deep edge detection. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2067–2074 (2015). https://doi.org/10.1109/CVPR.2015.7298818

  41. Song, H., Wang, W., Zhao, S., Shen, J., Lam, K.M.: Pyramid dilated deeper ConvLSTM for video salient object detection. In: Proceedings of the European Conference on Computer Vision (ECCV), September 2018

    Google Scholar 

  42. Truong, P., Danelljan, M., Timofte, R.: GLU-Net: global-local universal network for dense flow and correspondences. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6258–6268 (2020)

    Google Scholar 

  43. Tyszkiewicz, M.J., Fua, P., Trulls, E.: Disk: learning local features with policy gradient. arXiv preprint arXiv:2006.13566 (2020)

  44. Varghese, S., et al.: Unsupervised temporal consistency metric for video segmentation in highly-automated driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 336–337 (2020)

    Google Scholar 

  45. Vicente, T.F.Y., Hou, L., Yu, C.-P., Hoai, M., Samaras, D.: Large-scale training of shadow detectors with noisily-annotated shadow examples. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9910, pp. 816–832. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46466-4_49

    Chapter  Google Scholar 

  46. Voigtlaender, P., Chai, Y., Schroff, F., Adam, H., Leibe, B., Chen, L.: FEELVOS: fast end-to-end embedding learning for video object segmentation. CoRR abs/1902.09513 (2019). http://arxiv.org/abs/1902.09513

  47. Wang, T., Hu, X., Fu, C.W., Heng, P.A.: Single-stage instance shadow detection with bidirectional relation learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1–11 (2021)

    Google Scholar 

  48. Wang, T., Hu, X., Wang, Q., Heng, P.A., Fu, C.W.: Instance shadow detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1880–1889 (2020)

    Google Scholar 

  49. Wang, X., Jabri, A., Efros, A.A.: Learning correspondence from the cycle-consistency of time. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2566–2576 (2019)

    Google Scholar 

  50. Xu, J., Wang, X.: Rethinking self-supervised correspondence learning: a video frame-level similarity perspective. arXiv preprint arXiv:2103.17263 (2021)

  51. Zhang, F., Torr, P., Ranftl, R., Richter, S.: Looking beyond single images for contrastive semantic segmentation learning. In: Advances in Neural Information Processing Systems, vol. 34 (2021)

    Google Scholar 

  52. Zhang, Q., Xiao, T., Efros, A.A., Pinto, L., Wang, X.: Learning cross-domain correspondence for control with dynamics cycle-consistency. arXiv preprint arXiv:2012.09811 (2020)

  53. Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J.: Pyramid scene parsing network. In: CVPR (2017)

    Google Scholar 

  54. Zhao, X., et al.: Contrastive learning for label efficient semantic segmentation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10623–10633 (2021)

    Google Scholar 

  55. Zheng, Q., Qiao, X., Cao, Y., Lau, R.W.: Distraction-aware shadow detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5167–5176 (2019)

    Google Scholar 

  56. Zhu, L., et al.: Bidirectional feature pyramid network with recurrent attention residual modules for shadow detection. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 121–136 (2018)

    Google Scholar 

  57. Zhu, L., Xu, K., Ke, Z., Lau, R.W.: Mitigating intensity bias in shadow detection via feature decomposition and reweighting. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 4702–4711 (2021)

    Google Scholar 

Download references

Acknowledgement

This work was supported by a research grant from HKUST-BICI Exploratory Fund under HCIC-004 and a research grant from Foshan HKUST Projects under FSUST21-HKUST11E.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaomeng Li .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 1157 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ding, X., Yang, J., Hu, X., Li, X. (2022). Learning Shadow Correspondence for Video Shadow Detection. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13677. Springer, Cham. https://doi.org/10.1007/978-3-031-19790-1_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19790-1_42

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19789-5

  • Online ISBN: 978-3-031-19790-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics