Abstract
Video shadow detection aims to generate consistent shadow predictions among video frames. However, the current approaches suffer from inconsistent shadow predictions across frames, especially when the illumination and background textures change in a video. We make an observation that the inconsistent predictions are caused by the shadow feature inconsistency, i.e., the features of the same shadow regions show dissimilar proprieties among the nearby frames. In this paper, we present a novel Shadow-Consistent Correspondence method (SC-Cor) to enhance pixel-wise similarity of the specific shadow regions across frames for video shadow detection. Our proposed SC-Cor has three main advantages. Firstly, without requiring the dense pixel-to-pixel correspondence labels, SC-Cor can learn the pixel-wise correspondence across frames in a weakly-supervised manner. Secondly, SC-Cor considers intra-shadow separability, which is robust to the variant textures and illuminations in videos. Finally, SC-Cor is a plug-and-play module that can be easily integrated into existing shadow detectors with no extra computational cost. We further design a new evaluation metric to evaluate the temporal stability of the video shadow detection results. Experimental results show that SC-Cor outperforms the prior state-of-the-art method, by 6.51% on IoU and 3.35% on the newly introduced temporal stability metric. Code is available at https://github.com/xmed-lab/SC-Cor.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Benedek, C., Szirányi, T.: Bayesian foreground and shadow detection in uncertain frame rate surveillance videos. IEEE Trans. Image Process. 17(4), 608–621 (2008)
Berman, M., Triki, A.R., Blaschko, M.B.: The lovász-softmax loss: a tractable surrogate for the optimization of the intersection-over-union measure in neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4413–4421 (2018)
Bian, J., Lin, W.Y., Matsushita, Y., Yeung, S.K., Nguyen, T.D., Cheng, M.M.: GMS: grid-based motion statistics for fast, ultra-robust feature correspondence. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4181–4190 (2017)
Caron, M., Misra, I., Mairal, J., Goyal, P., Bojanowski, P., Joulin, A.: Unsupervised learning of visual features by contrasting cluster assignments. Adv. Neural. Inf. Process. Syst. 33, 9912–9924 (2020)
Chen, X., Fan, H., Girshick, R., He, K.: Improved baselines with momentum contrastive learning. arXiv preprint arXiv:2003.04297 (2020)
Chen, X., He, K.: Exploring simple siamese representation learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 15750–15758 (2021)
Chen, Z., et al.: Triple-cooperative video shadow detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2715–2724 (2021)
Chen, Z., Zhu, L., Wan, L., Wang, S., Feng, W., Heng, P.A.: A multi-task mean teacher for semi-supervised shadow detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5611–5620 (2020)
Ding, B., Long, C., Zhang, L., Xiao, C.: Argan: attentive recurrent generative adversarial network for shadow detection and removal. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) (2019)
Ding, X., Liu, Z., Li, X.: Free lunch for surgical video understanding by distilling self-supervisions. arXiv preprint arXiv:2205.09292 (2022)
Ding, X., et al.: Support-set based cross-supervision for video grounding. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 11573–11582 (2021)
Ding, X., et al.: Exploring language hierarchy for video grounding. IEEE Trans. Image Process. 31, 4693–4706 (2022)
He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised visual representation learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9729–9738 (2020)
Hou, Q., Cheng, M.M., Hu, X., Borji, A., Tu, Z., Torr, P.H.S.: Deeply supervised salient object detection with short connections. IEEE Trans. Pattern Anal. Mach. Intell. 41(4), 815–828 (2019). https://doi.org/10.1109/TPAMI.2018.2815688
Hu, S., Le, H., Samaras, D.: Temporal feature warping for video shadow detection. arXiv preprint arXiv:2107.14287 (2021)
Hu, X., Fu, C.W., Zhu, L., Qin, J., Heng, P.A.: Direction-aware spatial context features for shadow detection and removal. IEEE Trans. Pattern Anal. Mach. Intell. 42(11), 2795–2808 (2020)
Hu, X., Wang, T., Fu, C.W., Jiang, Y., Wang, Q., Heng, P.A.: Revisiting shadow detection: a new benchmark dataset for complex world. IEEE Trans. Image Process. 30, 1925–1934 (2021). https://doi.org/10.1109/TIP.2021.3049331
Hu, X., Zhu, L., Fu, C.W., Qin, J., Heng, P.A.: Direction-aware spatial context features for shadow detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7454–7462 (2018)
Jacques, J.C.S., Jung, C.R., Musse, S.R.: Background subtraction and shadow detection in grayscale video sequences. In: XVIII Brazilian Symposium on Computer Graphics and Image Processing (SIBGRAPI 2005), pp. 189–196. IEEE (2005)
Jiang, W., Trulls, E., Hosang, J., Tagliasacchi, A., Yi, K.M.: COTR: correspondence transformer for matching across images. arXiv preprint arXiv:2103.14167 (2021)
Junejo, I.N., Foroosh, H.: Estimating geo-temporal location of stationary cameras using shadow trajectories. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008. LNCS, vol. 5302, pp. 318–331. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88682-2_25
Karsch, K., Hedau, V., Forsyth, D., Hoiem, D.: Rendering synthetic objects into legacy photographs. ACM Trans. Graph. (TOG) 30(6), 1–12 (2011)
Khan, S.H., Bennamoun, M., Sohel, F., Togneri, R.: Automatic feature learning for robust shadow detection. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1939–1946. IEEE (2014)
Khosla, P., et al.: Supervised contrastive learning. Adv. Neural. Inf. Process. Syst. 33, 18661–18673 (2020)
Lai, W.S., Huang, J.B., Wang, O., Shechtman, E., Yumer, E., Yang, M.H.: Learning blind video temporal consistency. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 170–185 (2018)
Lalonde, J.F., Efros, A.A., Narasimhan, S.G.: Estimating natural illumination from a single outdoor image. In: 2009 IEEE 12th International Conference on Computer Vision, pp. 183–190. IEEE (2009)
Le, H., Vicente, T.F.Y., Nguyen, V., Hoai, M., Samaras, D.: A+D Net: training a shadow detector with adversarial shadow attenuation. In: Proceedings of the European Conference on Computer Vision (ECCV), September 2018
Li, H., Wang, N., Ding, X., Yang, X., Gao, X.: Adaptively learning facial expression representation via CF labels and distillation. IEEE Trans. Image Process. 30, 2016–2028 (2021)
Lin, T., Dollar, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Los Alamitos, CA, USA, pp. 936–944. IEEE Computer Society, July 2017. https://doi.org/10.1109/CVPR.2017.106
Liu, L., et al.: Learning by analogy: reliable supervision from transformations for unsupervised optical flow estimation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6489–6498 (2020)
Melekhov, I., Tiulpin, A., Sattler, T., Pollefeys, M., Rahtu, E., Kannala, J.: DGC-Net: dense geometric correspondence network. In: 2019 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 1034–1042. IEEE (2019)
Nadimi, S., Bhanu, B.: Physical models for moving shadow and object detection in video. IEEE Trans. Pattern Anal. Mach. Intell. 26(8), 1079–1087 (2004)
Nguyen, V., Vicente, T.F.Y., Zhao, M., Hoai, M., Samaras, D.: Shadow detection with conditional generative adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4510–4518 (2017)
Oh, S.W., Lee, J.Y., Xu, N., Kim, S.J.: Video object segmentation using space-time memory networks. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), October 2019
Okabe, T., Sato, I., Sato, Y.: Attached shadow coding: estimating surface normals from shadows under unknown reflectance and lighting conditions. In: 2009 IEEE 12th International Conference on Computer Vision, pp. 1693–1700. IEEE (2009)
Panagopoulos, A., Samaras, D., Paragios, N.: Robust shadow and illumination estimation using a mixture model. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 651–658. IEEE (2009)
Sanin, A., Sanderson, C., Lovell, B.C.: Shadow detection: a survey and comparative evaluation of recent methods. Pattern Recogn. 45(4), 1684–1695 (2012)
Santurkar, S., Tsipras, D., Ilyas, A., Madry, A.: How does batch normalization help optimization? In: Proceedings of the 32nd International Conference on Neural Information Processing Systems, pp. 2488–2498 (2018)
Sarlin, P.E., DeTone, D., Malisiewicz, T., Rabinovich, A.: Superglue: learning feature matching with graph neural networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4938–4947 (2020)
Shen, L., Chua, T.W., Leman, K.: Shadow optimization from structured deep edge detection. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2067–2074 (2015). https://doi.org/10.1109/CVPR.2015.7298818
Song, H., Wang, W., Zhao, S., Shen, J., Lam, K.M.: Pyramid dilated deeper ConvLSTM for video salient object detection. In: Proceedings of the European Conference on Computer Vision (ECCV), September 2018
Truong, P., Danelljan, M., Timofte, R.: GLU-Net: global-local universal network for dense flow and correspondences. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6258–6268 (2020)
Tyszkiewicz, M.J., Fua, P., Trulls, E.: Disk: learning local features with policy gradient. arXiv preprint arXiv:2006.13566 (2020)
Varghese, S., et al.: Unsupervised temporal consistency metric for video segmentation in highly-automated driving. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 336–337 (2020)
Vicente, T.F.Y., Hou, L., Yu, C.-P., Hoai, M., Samaras, D.: Large-scale training of shadow detectors with noisily-annotated shadow examples. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9910, pp. 816–832. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46466-4_49
Voigtlaender, P., Chai, Y., Schroff, F., Adam, H., Leibe, B., Chen, L.: FEELVOS: fast end-to-end embedding learning for video object segmentation. CoRR abs/1902.09513 (2019). http://arxiv.org/abs/1902.09513
Wang, T., Hu, X., Fu, C.W., Heng, P.A.: Single-stage instance shadow detection with bidirectional relation learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1–11 (2021)
Wang, T., Hu, X., Wang, Q., Heng, P.A., Fu, C.W.: Instance shadow detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1880–1889 (2020)
Wang, X., Jabri, A., Efros, A.A.: Learning correspondence from the cycle-consistency of time. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2566–2576 (2019)
Xu, J., Wang, X.: Rethinking self-supervised correspondence learning: a video frame-level similarity perspective. arXiv preprint arXiv:2103.17263 (2021)
Zhang, F., Torr, P., Ranftl, R., Richter, S.: Looking beyond single images for contrastive semantic segmentation learning. In: Advances in Neural Information Processing Systems, vol. 34 (2021)
Zhang, Q., Xiao, T., Efros, A.A., Pinto, L., Wang, X.: Learning cross-domain correspondence for control with dynamics cycle-consistency. arXiv preprint arXiv:2012.09811 (2020)
Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J.: Pyramid scene parsing network. In: CVPR (2017)
Zhao, X., et al.: Contrastive learning for label efficient semantic segmentation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10623–10633 (2021)
Zheng, Q., Qiao, X., Cao, Y., Lau, R.W.: Distraction-aware shadow detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5167–5176 (2019)
Zhu, L., et al.: Bidirectional feature pyramid network with recurrent attention residual modules for shadow detection. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 121–136 (2018)
Zhu, L., Xu, K., Ke, Z., Lau, R.W.: Mitigating intensity bias in shadow detection via feature decomposition and reweighting. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 4702–4711 (2021)
Acknowledgement
This work was supported by a research grant from HKUST-BICI Exploratory Fund under HCIC-004 and a research grant from Foshan HKUST Projects under FSUST21-HKUST11E.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Ding, X., Yang, J., Hu, X., Li, X. (2022). Learning Shadow Correspondence for Video Shadow Detection. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13677. Springer, Cham. https://doi.org/10.1007/978-3-031-19790-1_42
Download citation
DOI: https://doi.org/10.1007/978-3-031-19790-1_42
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-19789-5
Online ISBN: 978-3-031-19790-1
eBook Packages: Computer ScienceComputer Science (R0)