Skip to main content

Bridging the Domain Gap Towards Generalization in Automatic Colorization

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Abstract

We propose a novel automatic colorization technique that learns domain-invariance across multiple source domains and is able to leverage such invariance to colorize grayscale images in unseen target domains. This would be particularly useful for colorizing sketches, line arts, or line drawings, which are generally difficult to colorize due to a lack of data. To address this issue, we first apply existing domain generalization (DG) techniques, which, however, produce less compelling desaturated images due to the network’s over-emphasis on learning domain-invariant contents (or shapes). Thus, we propose a new domain generalizable colorization model, which consists of two modules: (i) a domain-invariant content-biased feature encoder and (ii) a source-domain-specific color generator. To mitigate the issue of insufficient source domain-specific color information in domain-invariant features, we propose a skip connection that can transfer content feature statistics via adaptive instance normalization. Our experiments with publicly available PACS and Office-Home DG benchmarks confirm that our model is indeed able to produce perceptually reasonable colorized images. Further, we conduct a user study where human evaluators are asked to (1) answer whether the generated image looks naturally colored and to (2) choose the best-generated images against alternatives. Our model significantly outperforms the alternatives, confirming the effectiveness of the proposed method. The code is available at https://github.com/Lhyejin/DG-Colorization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Anwar, S., Tahir, M., Li, C., Mian, A., Khan, F.S., Muzaffar, A.W.: Image colorization: a survey and dataset. arXiv preprint arXiv:2008.10774 (2020)

  2. Baker, N., Lu, H., Erlikhman, G., Kellman, P.J.: Deep convolutional networks do not classify based on global object shape. PLoS Comput. Biol. 14(12), e1006613 (2018)

    Google Scholar 

  3. Cao, Y., Zhou, Z., Zhang, W., Yu, Y.: Unsupervised diverse colorization via generative adversarial networks. In: Ceci, M., Hollmén, J., Todorovski, L., Vens, C., Džeroski, S. (eds.) ECML PKDD 2017. LNCS (LNAI), vol. 10534, pp. 151–166. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-71249-9_10

    Chapter  Google Scholar 

  4. Carlucci, F.M., D’Innocente, A., Bucci, S., Caputo, B., Tommasi, T.: Domain generalization by solving jigsaw puzzles. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2229–2238 (2019)

    Google Scholar 

  5. Charpiat, G., Hofmann, M., Schölkopf, B.: Automatic image colorization via multimodal predictions. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008. LNCS, vol. 5304, pp. 126–139. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88690-7_10

    Chapter  Google Scholar 

  6. Cheng, Z., Yang, Q., Sheng, B.: Deep colorization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 415–423 (2015)

    Google Scholar 

  7. Chia, A.Y.S., Zhuo, S., Gupta, R.K., Tai, Y.W., Cho, S.Y., Tan, P., Lin, S.: Semantic colorization with internet images. ACM Trans. Graph. (TOG) 30(6), 1–8 (2011)

    Article  Google Scholar 

  8. D’Innocente, A., Caputo, B.: Domain generalization with domain-specific aggregation modules. In: Brox, T., Bruhn, A., Fritz, M. (eds.) GCPR 2018. LNCS, vol. 11269, pp. 187–198. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-12939-2_14

    Chapter  Google Scholar 

  9. Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adaptation of deep networks. In: Proceedings of the International Conference on Machine Learning (ICML), pp. 1126–1135. PMLR (2017)

    Google Scholar 

  10. Ganin, Y., Ustinova, E., Ajakan, H., Germain, P., Larochelle, H., Laviolette, F., Marchand, M., Lempitsky, V.: Domain-adversarial training of neural networks. J. Mach. Learn. Res. 17(1), 2030–2096 (2016)

    MathSciNet  MATH  Google Scholar 

  11. Geirhos, R., Rubisch, P., Michaelis, C., Bethge, M., Wichmann, F.A., Brendel, W.: Imagenet-trained cnns are biased towards texture; increasing shape bias improves accuracy and robustness. arXiv preprint arXiv:1811.12231 (2018)

  12. Gupta, R.K., Chia, A.Y.S., Rajan, D., Ng, E.S., Zhiyong, H.: Image colorization using similar images. In: Proceedings of the 20th ACM International Conference on Multimedia, pp. 369–378 (2012)

    Google Scholar 

  13. Hermann, K., Chen, T., Kornblith, S.: The origins and prevalence of texture bias in convolutional neural networks. Adv. Neural. Inf. Process. Syst. 33, 19000–19015 (2020)

    Google Scholar 

  14. Huang, X., Belongie, S.: Arbitrary style transfer in real-time with adaptive instance normalization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1501–1510 (2017)

    Google Scholar 

  15. Iizuka, S., Simo-Serra, E., Ishikawa, H.: Let there be color! joint end-to-end learning of global and local image priors for automatic image colorization with simultaneous classification. ACM Trans. Graph. (ToG) 35(4), 1–11 (2016)

    Article  Google Scholar 

  16. Ironi, R., Cohen-Or, D., Lischinski, D.: Colorization by example. Rendering Techn. 29, 201–210 (2005)

    Google Scholar 

  17. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017)

    Google Scholar 

  18. Kim, M., Byun, H.: Learning texture invariant representation for domain adaptation of semantic segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12975–12984 (2020)

    Google Scholar 

  19. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  20. Lei, C., Chen, Q.: Fully automatic video colorization with self-regularization and diversity. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3753–3761 (2019)

    Google Scholar 

  21. Levin, A., Lischinski, D., Weiss, Y.: Colorization using optimization. In: ACM SIGGRAPH 2004 Papers, pp. 689–694 (2004)

    Google Scholar 

  22. Li, C., Wand, M.: Precomputed real-time texture synthesis with markovian generative adversarial networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9907, pp. 702–716. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46487-9_43

    Chapter  Google Scholar 

  23. Li, D., Yang, Y., Song, Y.Z., Hospedales, T.M.: Deeper, broader and artier domain generalization. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV) (2017)

    Google Scholar 

  24. Li, D., Yang, Y., Song, Y.Z., Hospedales, T.M.: Learning to generalize: meta-learning for domain generalization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32 (2018)

    Google Scholar 

  25. Li, H., Pan, S.J., Wang, S., Kot, A.C.: Domain generalization with adversarial feature learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5400–5409 (2018)

    Google Scholar 

  26. Li, Y., et al.: Deep domain generalization via conditional invariant adversarial networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 624–639 (2018)

    Google Scholar 

  27. Liu, X., Wan, L., Qu, Y., Wong, T.T., Lin, S., Leung, C.S., Heng, P.A.: Intrinsic colorization. In: ACM SIGGRAPH Asia 2008 papers, pp. 1–9 (2008)

    Google Scholar 

  28. Mao, X., Li, Q., Xie, H., Lau, R.Y., Wang, Z., Paul Smolley, S.: Least squares generative adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2794–2802 (2017)

    Google Scholar 

  29. Muandet, K., Balduzzi, D., Schölkopf, B.: Domain generalization via invariant feature representation. In: Proceedings of the International Conference on Machine Learning (ICML), pp. 10–18. PMLR (2013)

    Google Scholar 

  30. Nam, H., Lee, H., Park, J., Yoon, W., Yoo, D.: Reducing domain gap by reducing style bias. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8690–8699 (2021)

    Google Scholar 

  31. Nazeri, K., Ng, E., Ebrahimi, M.: Image colorization using generative adversarial networks. In: Perales, F.J., Kittler, J. (eds.) AMDO 2018. LNCS, vol. 10945, pp. 85–94. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94544-6_9

    Chapter  Google Scholar 

  32. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional Networks for Biomedical Image Segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  33. Sagawa, S., Koh, P.W., Hashimoto, T.B., Liang, P.: Distributionally robust neural networks for group shifts: on the importance of regularization for worst-case generalization. arXiv preprint arXiv:1911.08731 (2019)

  34. Su, J.W., Chu, H.K., Huang, J.B.: Instance-aware image colorization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7968–7977 (2020)

    Google Scholar 

  35. Sun, B., Saenko, K.: Deep CORAL: correlation alignment for deep domain adaptation. In: Hua, G., Jégou, H. (eds.) ECCV 2016. LNCS, vol. 9915, pp. 443–450. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49409-8_35

    Chapter  Google Scholar 

  36. Vapnik, V.: Statistical Learning Theory. Wiley, New York (1998)

    Google Scholar 

  37. Venkateswara, H., Eusebio, J., Chakraborty, S., Panchanathan, S.: Deep hashing network for unsupervised domain adaptation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5018–5027 (2017)

    Google Scholar 

  38. Vitoria, P., Raad, L., Ballester, C.: Chromagan: adversarial picture colorization with semantic class distribution. In: The IEEE Winter Conference on Applications of Computer Vision, pp. 2445–2454 (2020)

    Google Scholar 

  39. Wang, Y., Li, H., Kot, A.C.: Heterogeneous domain generalization via domain mixup. In: ICASSP 2020–2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 3622–3626. IEEE (2020)

    Google Scholar 

  40. Welsh, T., Ashikhmin, M., Mueller, K.: Transferring color to greyscale images. In: Proceedings of the 29th Annual Conference on Computer Graphics and Interactive Techniques, pp. 277–280 (2002)

    Google Scholar 

  41. Xu, M., et al.: Adversarial domain adaptation with domain mixup. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 6502–6509 (2020)

    Google Scholar 

  42. Yan, S., Song, H., Li, N., Zou, L., Ren, L.: Improve unsupervised domain adaptation with mixup training. arXiv preprint arXiv:2001.00677 (2020)

  43. Zhang, R., Isola, P., Efros, A.A.: Colorful image colorization. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9907, pp. 649–666. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46487-9_40

    Chapter  Google Scholar 

  44. Zhang, R., et al.: Real-time user-guided image colorization with learned deep priors. arXiv preprint arXiv:1705.02999 (2017)

  45. Zhao, J., Han, J., Shao, L., Snoek, C.G.M.: Pixelated semantic colorization. Int. J. Comput. Vis. 128(4), 818–834 (2019). https://doi.org/10.1007/s11263-019-01271-4

    Article  MATH  Google Scholar 

Download references

Acknowledgement

This work was supported by Institute of Information & communications Technology Planning & Evaluation (IITP) grant funded by the Korea government (MSIT) (No. 2021-0-00994, Sustainable and robust autonomous driving AI education/development integrated platform). J. Kim was supported by the MSIT (Ministry of Science and ICT), Korea, under the ICT Creative Consilience program (IITP-2022-2020-0-01819) supervised by the IITP (Institute for Information & communications Technology Planning & Evaluation)

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jinkyu Kim or Jaekoo Lee .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 4766 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lee, H., Kim, D., Lee, D., Kim, J., Lee, J. (2022). Bridging the Domain Gap Towards Generalization in Automatic Colorization. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13677. Springer, Cham. https://doi.org/10.1007/978-3-031-19790-1_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19790-1_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19789-5

  • Online ISBN: 978-3-031-19790-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics