Abstract
Recent methods for conditional image generation benefit from dense supervision such as segmentation label maps to achieve high-fidelity. However, it is rarely explored to employ dense supervision for unconditional image generation. Here we explore the efficacy of dense supervision in unconditional generation and find generator feature maps can be an alternative of cost-expensive semantic label maps. From our empirical evidences, we propose a new generator-guided discriminator regularization (GGDR) in which the generator feature maps supervise the discriminator to have rich semantic representations in unconditional generation. In specific, we employ an U-Net architecture for discriminator, which is trained to predict the generator feature maps given fake images as inputs. Extensive experiments on mulitple datasets show that our GGDR consistently improves the performance of baseline methods in terms of quantitative and qualitative aspects. Code is available at https://github.com/naver-ai/GGDR.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Flickr. https://www.flickr.com/
Kaggle landscapes dataset. https://www.kaggle.com/arnaud58/landscape-pictures (2019)
Bau, D., et al.: Gan dissection: visualizing and understanding generative adversarial networks. In: ICLR (2019)
Bond-Taylor, S., Hessey, P., Sasaki, H., Breckon, T.P., Willcocks, C.G.: Unleashing transformers: parallel token prediction with discrete absorbing diffusion for fast high-resolution image generation from vector-quantized codes. arXiv preprint. arXiv:2111.12701 (2021)
Brock, A., Donahue, J., Simonyan, K.: Large scale GAN training for high fidelity natural image synthesis. In: ICLR (2019)
Chen, T., Zhai, X., Ritter, M., Lucic, M., Houlsby, N.: Self-supervised gans via auxiliary rotation loss. In: CVPR (2019)
Choi, Y., Choi, M., Kim, M., Ha, J.W., Kim, S., Choo, J.: Stargan: unified generative adversarial networks for multi-domain image-to-image translation. In: CVPR (2018)
Choi, Y., Uh, Y., Yoo, J., Ha, J.W.: Stargan v2: diverse image synthesis for multiple domains. In: CVPR (2020)
Collins, E., Bala, R., Price, B., Susstrunk, S.: Editing in style: uncovering the local semantics of gans. In: CVPR (2020)
Ditria, L., Meyer, B.J., Drummond, T.: Opengan: open set generative adversarial networks. In: ACCV (2020)
Endo, Y., Kanamori, Y.: Few-shot semantic image synthesis using stylegan prior. CoRR abs/2103.14877 (2021)
Gong, X., Chang, S., Jiang, Y., Wang, Z.: Autogan: neural architecture search for generative adversarial networks. In: ICCV (2019)
Goodfellow, I., et al.: Generative adversarial networks. In: NeurIPS (2014)
Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. In: NeurIPS (2017)
Härkönen, E., Hertzmann, A., Lehtinen, J., Paris, S.: Ganspace: discovering interpretable gan controls. NeurIPS (2020)
Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: NeurIPS (2017)
Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. In: NeurIPS (2020)
Huang, S.W., Lin, C.T., Chen, S.P., Wu, Y.Y., Hsu, P.H., Lai, S.H.: Auggan: cross domain adaptation with gan-based data augmentation. In: ECCV (2018)
Humayun, A.I., Balestriero, R., Baraniuk, R.: Polarity sampling: quality and diversity control of pre-trained generative networks via singular values. In: CVPR (2022)
Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: CVPR (2017)
Jahanian, A., Chai, L., Isola, P.: On the "steerability" of generative adversarial networks. In: ICLR (2020)
Jeong, J., Shin, J.: Training gans with stronger augmentations via contrastive discriminator. In: ICLR (2021)
Jiang, L., Dai, B., Wu, W., Loy, C.C.: Deceive d: adaptive pseudo augmentation for gan training with limited data. In: NeurIPS (2021)
Karras, T., Aila, T., Laine, S., Lehtinen, J.: Progressive growing of gans for improved quality, stability, and variation. In: ICLR (2018)
Karras, T., Aittala, M., Hellsten, J., Laine, S., Lehtinen, J., Aila, T.: Training generative adversarial networks with limited data. In: NeurIPS (2020)
Karras, T., et al.: Alias-free generative adversarial networks. In: NeurIPS (2021)
Karras, T., Laine, S., Aila, T.: A style-based generator architecture for generative adversarial networks. In: CVPR (2019)
Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J., Aila, T.: Analyzing and improving the image quality of stylegan. In: CVPR (2020)
Kim, H., et al.: Nsml: meet the mlaas platform with a real-world case study. arXiv preprint. arXiv:1810.09957 (2018)
Kim, H., Choi, Y., Kim, J., Yoo, S., Uh, Y.: Exploiting spatial dimensions of latent in gan for real-time image editing. In: CVPR (2021)
Kim, H., Jhoo, H.Y., Park, E., Yoo, S.: Tag2pix: line art colorization using text tag with secat and changing loss. In: ICCV (2019)
Kim, J., Choi, Y., Uh, Y.: Feature statistics mixing regularization for generative adversarial networks. In: CVPR (2022)
Kim, J., Kim, M., Kang, H., Lee, K.H.: U-gat-it: unsupervised generative attentional networks with adaptive layer-instance normalization for image-to-image translation. In: ICLR (2020)
Kim, T., Cha, M., Kim, H., Lee, J.K., Kim, J.: Learning to discover cross-domain relations with generative adversarial networks. In: ICML (2017)
Kim, Y., Ha, J.W.: Contrastive fine-grained class clustering via generative adversarial networks. ICLR (2022)
Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from tiny images. Department of Computer Science, University of Toronto, Technical report (2009)
Kumari, N., Zhang, R., Shechtman, E., Zhu, J.Y.: Ensembling off-the-shelf models for gan training. In: CVPR (2022)
Kynkäänniemi, T., Karras, T., Laine, S., Lehtinen, J., Aila, T.: Improved precision and recall metric for assessing generative models. NeurIPS (2019)
Liu, B., Zhu, Y., Song, K., Elgammal, A.: Towards faster and stabilized gan training for high-fidelity few-shot image synthesis. In: ICLR (2020)
Liu, X., Yin, G., Shao, J., Wang, X., Li, H.: Learning to predict layout-to-image conditional convolutions for semantic image synthesis. In: NeurIPS (2019)
Mescheder, L., Nowozin, S., Geiger, A.: Which training methods for gans do actually converge? In: ICML (2018)
Miyato, T., Kataoka, T., Koyama, M., Yoshida, Y.: Spectral normalization for generative adversarial networks. ICLR (2018)
Odena, A., Olah, C., Shlens, J.: Conditional image synthesis with auxiliary classifier gans. In: ICML (2017)
Park, T., Liu, M.Y., Wang, T.C., Zhu, J.Y.: Semantic image synthesis with spatially-adaptive normalization. In: CVPR (2019)
Roth, K., Lucchi, A., Nowozin, S., Hofmann, T.: Stabilizing training of generative adversarial networks through regularization. NeurIPS (2017)
Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., Chen, X.: Improved techniques for training gans. In: NeurIPS (2016)
Sauer, A., Chitta, K., Müller, J., Geiger, A.: Projected gans converge faster. NeurIPS (2021)
Schonfeld, E., Schiele, B., Khoreva, A.: A u-net based discriminator for generative adversarial networks. In: CVPR (2020)
Shen, Y., Gu, J., Tang, X., Zhou, B.: Interpreting the latent space of gans for semantic face editing. In: CVPR (2020)
Shocher, A., et al.: Semantic pyramid for image generation. In: CVPR (2020)
Siarohin, A., Sangineto, E., Lathuiliere, S., Sebe, N.: Deformable gans for pose-based human image generation. In: CVPR (2018)
Skorokhodov, I., Tulyakov, S., Elhoseiny, M.: Stylegan-v: A continuous video generator with the price, image quality and perks of stylegan2. In: CVPR (2022)
Song, Y., Sohl-Dickstein, J., Kingma, D.P., Kumar, A., Ermon, S., Poole, B.: Score-based generative modeling through stochastic differential equations. In: ICLR (2021)
Sung, N., et al.: Nsml: a machine learning platform that enables you to focus on your models. arXiv preprint. arXiv:1712.05902 (2017)
Sushko, V., Schönfeld, E., Zhang, D., Gall, J., Schiele, B., Khoreva, A.: You only need adversarial supervision for semantic image synthesis. In: ICLR (2021)
Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: CVPR (2016)
Tan, M., Le, Q.: Efficientnet: rethinking model scaling for convolutional neural networks. In: ICML (2019)
Tian, Y., et al.: A good image generator is what you need for high-resolution video synthesis. In: ICLR (2021)
Tulyakov, S., Liu, M.Y., Yang, X., Kautz, J.: Mocogan: decomposing motion and content for video generation. In: CVPR (2018)
Wang, T.C., Liu, M.Y., Zhu, J.Y., Tao, A., Kautz, J., Catanzaro, B.: High-resolution image synthesis and semantic manipulation with conditional gans. In: CVPR (2018)
Wang, X., Gupta, A.: Generative image modeling using style and structure adversarial networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 318–335. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_20
Xu, J., Zheng, C.: Linear semantics in generative adversarial networks. In: CVPR (2021)
Yu, F., Seff, A., Zhang, Y., Song, S., Funkhouser, T., Xiao, J.: Lsun: construction of a large-scale image dataset using deep learning with humans in the loop. arXiv preprint. arXiv:1506.03365 (2015)
Yu, S., et al.: Generating videos with dynamics-aware implicit generative adversarial networks. In: ICLR (2022)
Yun, S., Han, D., Oh, S.J., Chun, S., Choe, J., Yoo, Y.: Cutmix: regularization strategy to train strong classifiers with localizable features. In: ICCV (2019)
Zhang, D., Khoreva, A.: PA-GAN: Improving gan training by progressive augmentation. In: NeurIPS (2019)
Zhang, H., Zhang, Z., Odena, A., Lee, H.: Consistency regularization for generative adversarial networks. In: ICLR (2020)
Zhang, H., Cisse, M., Dauphin, Y.N., Lopez-Paz, D.: mixup: beyond empirical risk minimization. arXiv preprint .arXiv:1710.09412 (2017)
Zhao, S., Liu, Z., Lin, J., Zhu, J.Y., Han, S.: Differentiable augmentation for data-efficient gan training. In: NeurIPS (2020)
Zhao, Z., Singh, S., Lee, H., Zhang, Z., Odena, A., Zhang, H.: Improved consistency regularization for gans. In: AAAI (2021)
Zhou, B., Zhao, H., Puig, X., Fidler, S., Barriuso, A., Torralba, A.: Scene parsing through ade20k dataset. In: CVPR (2017)
Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: ICCV (2017)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Lee, G., Kim, H., Kim, J., Kim, S., Ha, JW., Choi, Y. (2022). Generator Knows What Discriminator Should Learn in Unconditional GANs. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13677. Springer, Cham. https://doi.org/10.1007/978-3-031-19790-1_25
Download citation
DOI: https://doi.org/10.1007/978-3-031-19790-1_25
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-19789-5
Online ISBN: 978-3-031-19790-1
eBook Packages: Computer ScienceComputer Science (R0)