Skip to main content

Generator Knows What Discriminator Should Learn in Unconditional GANs

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Abstract

Recent methods for conditional image generation benefit from dense supervision such as segmentation label maps to achieve high-fidelity. However, it is rarely explored to employ dense supervision for unconditional image generation. Here we explore the efficacy of dense supervision in unconditional generation and find generator feature maps can be an alternative of cost-expensive semantic label maps. From our empirical evidences, we propose a new generator-guided discriminator regularization (GGDR) in which the generator feature maps supervise the discriminator to have rich semantic representations in unconditional generation. In specific, we employ an U-Net architecture for discriminator, which is trained to predict the generator feature maps given fake images as inputs. Extensive experiments on mulitple datasets show that our GGDR consistently improves the performance of baseline methods in terms of quantitative and qualitative aspects. Code is available at https://github.com/naver-ai/GGDR.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Flickr. https://www.flickr.com/

  2. Kaggle landscapes dataset. https://www.kaggle.com/arnaud58/landscape-pictures (2019)

  3. Bau, D., et al.: Gan dissection: visualizing and understanding generative adversarial networks. In: ICLR (2019)

    Google Scholar 

  4. Bond-Taylor, S., Hessey, P., Sasaki, H., Breckon, T.P., Willcocks, C.G.: Unleashing transformers: parallel token prediction with discrete absorbing diffusion for fast high-resolution image generation from vector-quantized codes. arXiv preprint. arXiv:2111.12701 (2021)

  5. Brock, A., Donahue, J., Simonyan, K.: Large scale GAN training for high fidelity natural image synthesis. In: ICLR (2019)

    Google Scholar 

  6. Chen, T., Zhai, X., Ritter, M., Lucic, M., Houlsby, N.: Self-supervised gans via auxiliary rotation loss. In: CVPR (2019)

    Google Scholar 

  7. Choi, Y., Choi, M., Kim, M., Ha, J.W., Kim, S., Choo, J.: Stargan: unified generative adversarial networks for multi-domain image-to-image translation. In: CVPR (2018)

    Google Scholar 

  8. Choi, Y., Uh, Y., Yoo, J., Ha, J.W.: Stargan v2: diverse image synthesis for multiple domains. In: CVPR (2020)

    Google Scholar 

  9. Collins, E., Bala, R., Price, B., Susstrunk, S.: Editing in style: uncovering the local semantics of gans. In: CVPR (2020)

    Google Scholar 

  10. Ditria, L., Meyer, B.J., Drummond, T.: Opengan: open set generative adversarial networks. In: ACCV (2020)

    Google Scholar 

  11. Endo, Y., Kanamori, Y.: Few-shot semantic image synthesis using stylegan prior. CoRR abs/2103.14877 (2021)

    Google Scholar 

  12. Gong, X., Chang, S., Jiang, Y., Wang, Z.: Autogan: neural architecture search for generative adversarial networks. In: ICCV (2019)

    Google Scholar 

  13. Goodfellow, I., et al.: Generative adversarial networks. In: NeurIPS (2014)

    Google Scholar 

  14. Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of wasserstein gans. In: NeurIPS (2017)

    Google Scholar 

  15. Härkönen, E., Hertzmann, A., Lehtinen, J., Paris, S.: Ganspace: discovering interpretable gan controls. NeurIPS (2020)

    Google Scholar 

  16. Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local nash equilibrium. In: NeurIPS (2017)

    Google Scholar 

  17. Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. In: NeurIPS (2020)

    Google Scholar 

  18. Huang, S.W., Lin, C.T., Chen, S.P., Wu, Y.Y., Hsu, P.H., Lai, S.H.: Auggan: cross domain adaptation with gan-based data augmentation. In: ECCV (2018)

    Google Scholar 

  19. Humayun, A.I., Balestriero, R., Baraniuk, R.: Polarity sampling: quality and diversity control of pre-trained generative networks via singular values. In: CVPR (2022)

    Google Scholar 

  20. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: CVPR (2017)

    Google Scholar 

  21. Jahanian, A., Chai, L., Isola, P.: On the "steerability" of generative adversarial networks. In: ICLR (2020)

    Google Scholar 

  22. Jeong, J., Shin, J.: Training gans with stronger augmentations via contrastive discriminator. In: ICLR (2021)

    Google Scholar 

  23. Jiang, L., Dai, B., Wu, W., Loy, C.C.: Deceive d: adaptive pseudo augmentation for gan training with limited data. In: NeurIPS (2021)

    Google Scholar 

  24. Karras, T., Aila, T., Laine, S., Lehtinen, J.: Progressive growing of gans for improved quality, stability, and variation. In: ICLR (2018)

    Google Scholar 

  25. Karras, T., Aittala, M., Hellsten, J., Laine, S., Lehtinen, J., Aila, T.: Training generative adversarial networks with limited data. In: NeurIPS (2020)

    Google Scholar 

  26. Karras, T., et al.: Alias-free generative adversarial networks. In: NeurIPS (2021)

    Google Scholar 

  27. Karras, T., Laine, S., Aila, T.: A style-based generator architecture for generative adversarial networks. In: CVPR (2019)

    Google Scholar 

  28. Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J., Aila, T.: Analyzing and improving the image quality of stylegan. In: CVPR (2020)

    Google Scholar 

  29. Kim, H., et al.: Nsml: meet the mlaas platform with a real-world case study. arXiv preprint. arXiv:1810.09957 (2018)

  30. Kim, H., Choi, Y., Kim, J., Yoo, S., Uh, Y.: Exploiting spatial dimensions of latent in gan for real-time image editing. In: CVPR (2021)

    Google Scholar 

  31. Kim, H., Jhoo, H.Y., Park, E., Yoo, S.: Tag2pix: line art colorization using text tag with secat and changing loss. In: ICCV (2019)

    Google Scholar 

  32. Kim, J., Choi, Y., Uh, Y.: Feature statistics mixing regularization for generative adversarial networks. In: CVPR (2022)

    Google Scholar 

  33. Kim, J., Kim, M., Kang, H., Lee, K.H.: U-gat-it: unsupervised generative attentional networks with adaptive layer-instance normalization for image-to-image translation. In: ICLR (2020)

    Google Scholar 

  34. Kim, T., Cha, M., Kim, H., Lee, J.K., Kim, J.: Learning to discover cross-domain relations with generative adversarial networks. In: ICML (2017)

    Google Scholar 

  35. Kim, Y., Ha, J.W.: Contrastive fine-grained class clustering via generative adversarial networks. ICLR (2022)

    Google Scholar 

  36. Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from tiny images. Department of Computer Science, University of Toronto, Technical report (2009)

    Google Scholar 

  37. Kumari, N., Zhang, R., Shechtman, E., Zhu, J.Y.: Ensembling off-the-shelf models for gan training. In: CVPR (2022)

    Google Scholar 

  38. Kynkäänniemi, T., Karras, T., Laine, S., Lehtinen, J., Aila, T.: Improved precision and recall metric for assessing generative models. NeurIPS (2019)

    Google Scholar 

  39. Liu, B., Zhu, Y., Song, K., Elgammal, A.: Towards faster and stabilized gan training for high-fidelity few-shot image synthesis. In: ICLR (2020)

    Google Scholar 

  40. Liu, X., Yin, G., Shao, J., Wang, X., Li, H.: Learning to predict layout-to-image conditional convolutions for semantic image synthesis. In: NeurIPS (2019)

    Google Scholar 

  41. Mescheder, L., Nowozin, S., Geiger, A.: Which training methods for gans do actually converge? In: ICML (2018)

    Google Scholar 

  42. Miyato, T., Kataoka, T., Koyama, M., Yoshida, Y.: Spectral normalization for generative adversarial networks. ICLR (2018)

    Google Scholar 

  43. Odena, A., Olah, C., Shlens, J.: Conditional image synthesis with auxiliary classifier gans. In: ICML (2017)

    Google Scholar 

  44. Park, T., Liu, M.Y., Wang, T.C., Zhu, J.Y.: Semantic image synthesis with spatially-adaptive normalization. In: CVPR (2019)

    Google Scholar 

  45. Roth, K., Lucchi, A., Nowozin, S., Hofmann, T.: Stabilizing training of generative adversarial networks through regularization. NeurIPS (2017)

    Google Scholar 

  46. Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., Chen, X.: Improved techniques for training gans. In: NeurIPS (2016)

    Google Scholar 

  47. Sauer, A., Chitta, K., Müller, J., Geiger, A.: Projected gans converge faster. NeurIPS (2021)

    Google Scholar 

  48. Schonfeld, E., Schiele, B., Khoreva, A.: A u-net based discriminator for generative adversarial networks. In: CVPR (2020)

    Google Scholar 

  49. Shen, Y., Gu, J., Tang, X., Zhou, B.: Interpreting the latent space of gans for semantic face editing. In: CVPR (2020)

    Google Scholar 

  50. Shocher, A., et al.: Semantic pyramid for image generation. In: CVPR (2020)

    Google Scholar 

  51. Siarohin, A., Sangineto, E., Lathuiliere, S., Sebe, N.: Deformable gans for pose-based human image generation. In: CVPR (2018)

    Google Scholar 

  52. Skorokhodov, I., Tulyakov, S., Elhoseiny, M.: Stylegan-v: A continuous video generator with the price, image quality and perks of stylegan2. In: CVPR (2022)

    Google Scholar 

  53. Song, Y., Sohl-Dickstein, J., Kingma, D.P., Kumar, A., Ermon, S., Poole, B.: Score-based generative modeling through stochastic differential equations. In: ICLR (2021)

    Google Scholar 

  54. Sung, N., et al.: Nsml: a machine learning platform that enables you to focus on your models. arXiv preprint. arXiv:1712.05902 (2017)

  55. Sushko, V., Schönfeld, E., Zhang, D., Gall, J., Schiele, B., Khoreva, A.: You only need adversarial supervision for semantic image synthesis. In: ICLR (2021)

    Google Scholar 

  56. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: CVPR (2016)

    Google Scholar 

  57. Tan, M., Le, Q.: Efficientnet: rethinking model scaling for convolutional neural networks. In: ICML (2019)

    Google Scholar 

  58. Tian, Y., et al.: A good image generator is what you need for high-resolution video synthesis. In: ICLR (2021)

    Google Scholar 

  59. Tulyakov, S., Liu, M.Y., Yang, X., Kautz, J.: Mocogan: decomposing motion and content for video generation. In: CVPR (2018)

    Google Scholar 

  60. Wang, T.C., Liu, M.Y., Zhu, J.Y., Tao, A., Kautz, J., Catanzaro, B.: High-resolution image synthesis and semantic manipulation with conditional gans. In: CVPR (2018)

    Google Scholar 

  61. Wang, X., Gupta, A.: Generative image modeling using style and structure adversarial networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 318–335. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_20

    Chapter  Google Scholar 

  62. Xu, J., Zheng, C.: Linear semantics in generative adversarial networks. In: CVPR (2021)

    Google Scholar 

  63. Yu, F., Seff, A., Zhang, Y., Song, S., Funkhouser, T., Xiao, J.: Lsun: construction of a large-scale image dataset using deep learning with humans in the loop. arXiv preprint. arXiv:1506.03365 (2015)

  64. Yu, S., et al.: Generating videos with dynamics-aware implicit generative adversarial networks. In: ICLR (2022)

    Google Scholar 

  65. Yun, S., Han, D., Oh, S.J., Chun, S., Choe, J., Yoo, Y.: Cutmix: regularization strategy to train strong classifiers with localizable features. In: ICCV (2019)

    Google Scholar 

  66. Zhang, D., Khoreva, A.: PA-GAN: Improving gan training by progressive augmentation. In: NeurIPS (2019)

    Google Scholar 

  67. Zhang, H., Zhang, Z., Odena, A., Lee, H.: Consistency regularization for generative adversarial networks. In: ICLR (2020)

    Google Scholar 

  68. Zhang, H., Cisse, M., Dauphin, Y.N., Lopez-Paz, D.: mixup: beyond empirical risk minimization. arXiv preprint .arXiv:1710.09412 (2017)

  69. Zhao, S., Liu, Z., Lin, J., Zhu, J.Y., Han, S.: Differentiable augmentation for data-efficient gan training. In: NeurIPS (2020)

    Google Scholar 

  70. Zhao, Z., Singh, S., Lee, H., Zhang, Z., Odena, A., Zhang, H.: Improved consistency regularization for gans. In: AAAI (2021)

    Google Scholar 

  71. Zhou, B., Zhao, H., Puig, X., Fidler, S., Barriuso, A., Torralba, A.: Scene parsing through ade20k dataset. In: CVPR (2017)

    Google Scholar 

  72. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: ICCV (2017)

    Google Scholar 

Download references

Acknowledgement

The experiments in the paper were conducted on NAVER Smart Machine Learning (NSML) platform [29, 54]. We thank to Jun-Yan Zhu, Jaehoon Yoo, NAVER AI LAB researchers and the reviewers for their helpful comments and discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunjey Choi .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 10331 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lee, G., Kim, H., Kim, J., Kim, S., Ha, JW., Choi, Y. (2022). Generator Knows What Discriminator Should Learn in Unconditional GANs. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13677. Springer, Cham. https://doi.org/10.1007/978-3-031-19790-1_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19790-1_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19789-5

  • Online ISBN: 978-3-031-19790-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics