Skip to main content

Implicit Neural Representations for Variable Length Human Motion Generation

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Abstract

We propose an action-conditional human motion generation method using variational implicit neural representations (INR). The variational formalism enables action-conditional distributions of INRs, from which one can easily sample representations to generate novel human motion sequences. Our method offers variable-length sequence generation by construction because a part of INR is optimized for a whole sequence of arbitrary length with temporal embeddings. In contrast, previous works reported difficulties with modeling variable-length sequences. We confirm that our method with a Transformer decoder outperforms all relevant methods on HumanAct12, NTU-RGBD, and UESTC datasets in terms of realism and diversity of generated motions. Surprisingly, even our method with an MLP decoder consistently outperforms the state-of-the-art Transformer-based auto-encoder. In particular, we show that variable-length motions generated by our method are better than fixed-length motions generated by the state-of-the-art method in terms of realism and diversity. Code at https://github.com/PACerv/ImplicitMotion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    We considered the CMU Mocap dataset, but manual inspection found the label annotations for some actions such as “Wash" and “Step" to be extremely noisy.

  2. 2.

    Due to the release agreement of NTU RGBD, this subset can no longer be distributed. We report results to provide a complete comparison to previous studies.

References

  1. Anokhin, I., Demochkin, K., Khakhulin, T., Sterkin, G., Lempitsky, V., Korzhenkov, D.: Image generators with conditionally-independent pixel synthesis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 14278–14287 (2021)

    Google Scholar 

  2. Barsoum, E., Kender, J., Liu, Z.: HP-GAN: probabilistic 3D human motion prediction via GAN. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 1418–1427 (2018)

    Google Scholar 

  3. Battan, N., Agrawal, Y., Rao, S.S., Goel, A., Sharma, A.: GlocalNet: class-aware long-term human motion synthesis. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), pp. 879–888 (2021)

    Google Scholar 

  4. Bond-Taylor, S., Willcocks, C.G.: Gradient origin networks. In: 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, 3–7 May 2021. OpenReview.net (2021)

    Google Scholar 

  5. Butepage, J., Black, M.J., Kragic, D., Kjellstrom, H.: Deep representation learning for human motion prediction and classification. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6158–6166 (2017)

    Google Scholar 

  6. Chen, Y., Liu, C., Shi, B.E., Liu, M.: CoMoGCN: Coherent motion aware trajectory prediction with graph representation. In: British Machine Vision Conference (BMVC) (2020)

    Google Scholar 

  7. Chen, Z., Zhang, H.: Learning implicit fields for generative shape modeling. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

    Google Scholar 

  8. DeVries, T., Bautista, M.A., Srivastava, N., Taylor, G.W., Susskind, J.M.: Unconstrained scene generation with locally conditioned radiance fields. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14304–14313 (2021)

    Google Scholar 

  9. Doersch, C., Zisserman, A.: Sim2real transfer learning for 3D human pose estimation: motion to the rescue. In: Advances in Neural Information Processing Systems (NeurIPS), vol. 32 (2019)

    Google Scholar 

  10. Guo, C., et al.: Action2Motion: conditioned generation of 3D human motions. In: Proceedings of the 28th ACM International Conference on Multimedia (MM 2020) (2020)

    Google Scholar 

  11. Higgins, I., et al.: \(\beta \)-VAE: learning basic visual concepts with a constrained variational framework. In: 5th International Conference on Learning Representations, ICLR 2017, Toulon, France, 24–26 April 2017, Conference Track Proceedings. OpenReview.net (2017)

    Google Scholar 

  12. Honda, Y., Kawakami, R., Naemura, T.: RNN-based motion prediction in competitive fencing considering interaction between players. In: British Machine Vision Conference (BMVC) (2020)

    Google Scholar 

  13. Hou, Y., Yao, H., Sun, X., Li, H.: Soul dancer: emotion-based human action generation. ACM Trans. Multimed. Comput. Commun. Appl. (TOMM) 15(3s), 1–19 (2020)

    Google Scholar 

  14. Ji, Y., Xu, F., Yang, Y., Shen, F., Shen, H.T., Zheng, W.S.: A large-scale RGB-D database for arbitrary-view human action recognition. In: Proceedings of the 26th ACM International Conference on Multimedia (MM 2018) (2018)

    Google Scholar 

  15. Kanazawa, A., Zhang, J.Y., Felsen, P., Malik, J.: Learning 3D human dynamics from video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

    Google Scholar 

  16. Karras, T., et al.: Advances in Neural Information Processing Systems (NeurIPS), vol. 34 (2021)

    Google Scholar 

  17. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. In: 2nd International Conference on Learning Representations, ICLR 2014, Banff, AB, Canada, 14–16 April 2014, Conference Track Proceedings (2014)

    Google Scholar 

  18. Kocabas, M., Athanasiou, N., Black, M.J.: Vibe: video inference for human body pose and shape estimation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5253–5263 (2020)

    Google Scholar 

  19. Li, R., Yang, S., Ross, D.A., Kanazawa, A.: AI choreographer: music conditioned 3D dance generation with AIST++. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV) (2021)

    Google Scholar 

  20. Li, Z., Niklaus, S., Snavely, N., Wang, O.: Neural scene flow fields for space-time view synthesis of dynamic scenes. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2021)

    Google Scholar 

  21. Liu, J., Shahroudy, A., Perez, M., Wang, G., Duan, L.Y., Kot, A.C.: NTU RGB+D 120: a large-scale benchmark for 3D human activity understanding. IEEE Trans. Pattern Anal. Mach. Intell. 42(10), 2684–2701 (2019)

    Article  Google Scholar 

  22. Loper, M., Mahmood, N., Romero, J., Pons-Moll, G., Black, M.J.: SMPL: a skinned multi-person linear model. ACM Trans. Graphics (Proc. SIGGRAPH Asia) 34(6), 248:1–248:16 (2015)

    Google Scholar 

  23. Meng, F., Liu, H., Liang, Y., Tu, J., Liu, M.: Sample fusion network: an end-to-end data augmentation network for skeleton-based human action recognition. IEEE Trans. Image Process. 28(11), 5281–5295 (2019)

    Article  MathSciNet  Google Scholar 

  24. Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng, R.: NeRF: representing scenes as neural radiance fields for view synthesis. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 405–421. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_24

    Chapter  Google Scholar 

  25. Niemeyer, M., Geiger, A.: GIRAFFE representing scenes as compositional generative neural feature fields. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2021)

    Google Scholar 

  26. Niemeyer, M., Mescheder, L., Oechsle, M., Geiger, A.: Occupancy flow: 4D reconstruction by learning particle dynamics. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) (2019)

    Google Scholar 

  27. Park, J.J., Florence, P., Straub, J., Newcombe, R., Lovegrove, S.: DeepSDF learning continuous signed distance functions for shape representation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 165–174 (2019)

    Google Scholar 

  28. Paszke, A., et al.: Pytorch: an imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems (NeurIPS), vol. 32 (2019)

    Google Scholar 

  29. Pavlakos, G., et al.: Expressive body capture: 3D hands, face, and body from a single image. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

    Google Scholar 

  30. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  31. Petrovich, M., Black, M.J., Varol, G.: Action-conditioned 3D human motion synthesis with Transformer VAE. In: International Conference on Computer Vision (ICCV) (2021)

    Google Scholar 

  32. Ravi, N., et al.: Accelerating 3D deep learning with Pytorch3D. arXiv:2007.08501 (2020)

  33. Schwarz, K., Liao, Y., Niemeyer, M., Geiger, A.: GRAF generative radiance fields for 3D-aware image synthesis. In: Advances in Neural Information Processing Systems (NeurIPS) (2020)

    Google Scholar 

  34. Sengupta, A., Budvytis, I., Cipolla, R.: Synthetic training for accurate 3D human pose and shape estimation in the wild. In: British Machine Vision Conference (BMVC) (2020)

    Google Scholar 

  35. Sitzmann, V., Martel, J.N., Bergman, A.W., Lindell, D.B., Wetzstein, G.: Implicit neural representations with periodic activation functions. In: Advances in Neural Information Processing Systems (NeurIPS) (2020)

    Google Scholar 

  36. Starke, S., Zhao, Y., Komura, T., Zaman, K.: Local motion phases for learning multi-contact character movements. ACM Trans. Graph. 39(4) (2020)

    Google Scholar 

  37. Starke, S., Zhao, Y., Zinno, F., Komura, T.: Neural animation layering for synthesizing martial arts movements. ACM Trans. Graph. 40(4) (2021)

    Google Scholar 

  38. Varol, G., Laptev, I., Schmid, C., Zisserman, A.: Synthetic humans for action recognition from unseen viewpoints. Int. J. Comput. Vis. 129(7), 2264–2287 (2021)

    Article  Google Scholar 

  39. Yan, S., Li, Z., Xiong, Y., Yan, H., Lin, D.: Convolutional sequence generation for skeleton-based action synthesis. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) (2019)

    Google Scholar 

  40. Yariv, L., et al.: Multiview neural surface reconstruction by disentangling geometry and appearance. In: Advances in Neural Information Processing Systems (NeurIPS), vol. 33 (2020)

    Google Scholar 

  41. Zhou, Y., Barnes, C., Lu, J., Yang, J., Li, H.: On the continuity of rotation representations in neural networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5745–5753 (2019)

    Google Scholar 

  42. Zou, S., et al.: 3D human shape reconstruction from a polarization image. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12359, pp. 351–368. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58568-6_21

    Chapter  Google Scholar 

Download references

Acknowledgements

This work is an outcome of a research project, Development of Quality Foundation for Machine-Learning Applications, supported by DENSO IT LAB Recognition and Learning Algorithm Collaborative Research Chair (Tokyo Tech.). It was also supported by JST CREST JPMJCR1687.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koichi Shinoda .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 3486 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cervantes, P., Sekikawa, Y., Sato, I., Shinoda, K. (2022). Implicit Neural Representations for Variable Length Human Motion Generation. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13677. Springer, Cham. https://doi.org/10.1007/978-3-031-19790-1_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19790-1_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19789-5

  • Online ISBN: 978-3-031-19790-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics