Skip to main content

GeoAug: Data Augmentation for Few-Shot NeRF with Geometry Constraints

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13677))

Included in the following conference series:

Abstract

Neural Radiance Fields (NeRF) show remarkable ability to render novel views of a certain scene by learning an implicit volumetric representation with only posed RGB images. Despite its impressiveness and simplicity, NeRF usually converges to sub-optimal solutions with incorrect geometries given few training images. We hereby present GeoAug: a data augmentation method for NeRF, which enriches training data based on multi-view geometric constraint. GeoAug provides random artificial (novel pose, RGB image) pairs for training, where the RGB image is from a nearby training view. The rendering of a novel pose is warped to the nearby training view with depth map and relative pose to match the RGB image supervision. Our method reduces the risk of over-fitting by introducing more data during training, while also provides additional implicit supervision for depth maps. In experiments, our method significantly boosts the performance of neural radiance fields conditioned on few training views.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Boss, M., Braun, R., Jampani, V., Barron, J.T., Liu, C., Lensch, H.: NeRD: neural reflectance decomposition from image collections. In: ICCV (2021)

    Google Scholar 

  2. Bozorgtabar, B., Rad, M.S., Mahapatra, D., Thiran, J.P.: SynDeMo: synergistic deep feature alignment for joint learning of depth and ego-motion. In: ICCV (2019)

    Google Scholar 

  3. Casser, V., Pirk, S., Mahjourian, R., Angelova, A.: Depth prediction without the sensors: leveraging structure for unsupervised learning from monocular videos. In: AAAI (2019)

    Google Scholar 

  4. Chan, E.R., Monteiro, M., Kellnhofer, P., Wu, J., Wetzstein, G.: PI-GAN: periodic implicit generative adversarial networks for 3D-aware image synthesis. In: CVPR (2021)

    Google Scholar 

  5. Choi, I., Gallo, O., Troccoli, A., Kim, M.H., Kautz, J.: Extreme view synthesis. In: CVPR (2019)

    Google Scholar 

  6. Deng, K., Liu, A., Zhu, J.Y., Ramanan, D.: Depth-supervised NeRF: fewer views and faster training for free. arXiv:2107.02791 (2021)

  7. Flynn, J., et al.: DeepView: high-quality view synthesis by learned gradient descent. In: CVPR (2019)

    Google Scholar 

  8. Flynn, J., Neulander, I., Philbin, J., Snavely, N.: DeepStereo: learning to predict new views from the world’s imagery. In: CVPR (2016)

    Google Scholar 

  9. Girshick, R.: Fast R-CNN. In: ICCV (2015)

    Google Scholar 

  10. Godard, C., Mac Aodha, O., Firman, M., Brostow, G.J.: Digging into self-supervised monocular depth estimation. In: ICCV (2019)

    Google Scholar 

  11. Hu, R., Ravi, N., Berg, A.C., Pathak, D.: WorldSheet: wrapping the world in a 3D sheet for view synthesis from a single image. In: ICCV (2021)

    Google Scholar 

  12. Jain, A., Tancik, M., Abbeel, P.: Putting NeRF on a diet: semantically consistent few-shot view synthesis. In: ICCV (2021)

    Google Scholar 

  13. Jensen, R., Dahl, A., Vogiatzis, G., Tola, E., Aanæs, H.: Large scale multi-view stereopsis evaluation. In: CVPR (2014)

    Google Scholar 

  14. Jiakai, Z., et al.: Editable free-viewpoint video using a layered neural representation. In: SIGGRAPH (2021)

    Google Scholar 

  15. Kanazawa, A., Tulsiani, S., Efros, A.A., Malik, J.: Learning category-specific mesh reconstruction from image collections. In: ECCV (2018)

    Google Scholar 

  16. Karras, T., Aittala, M., Hellsten, J., Laine, S., Lehtinen, J., Aila, T.: Training generative adversarial networks with limited data. In: NeurIPS (2020)

    Google Scholar 

  17. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv:1412.6980 (2014)

  18. Li, Z., Niklaus, S., Snavely, N., Wang, O.: Neural scene flow fields for space-time view synthesis of dynamic scenes. In: CVPR (2021)

    Google Scholar 

  19. Liu, S., Zhang, X., Zhang, Z., Zhang, R., Zhu, J.Y., Russell, B.: Editing conditional radiance fields. arXiv:2105.06466 (2021)

  20. Lombardi, S., Simon, T., Saragih, J., Schwartz, G., Lehrmann, A., Sheikh, Y.: Neural volumes: learning dynamic renderable volumes from images. In: SIGGRAPH (2019)

    Google Scholar 

  21. Mildenhall, B., et al.: Local light field fusion: practical view synthesis with prescriptive sampling guidelines. ACM TOG 38, 1–4 (2019)

    Article  Google Scholar 

  22. Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng, R.: NeRF: representing scenes as neural radiance fields for view synthesis. In: ECCV (2020)

    Google Scholar 

  23. Niemeyer, M., Barron, J.T., Mildenhall, B., Sajjadi, M.S., Geiger, A., Radwan, N.: RegNeRF: regularizing neural radiance fields for view synthesis from sparse inputs. In: CVPR (2022)

    Google Scholar 

  24. Niemeyer, M., Geiger, A.: GIRAFFE: representing scenes as compositional generative neural feature fields. In: CVPR (2021)

    Google Scholar 

  25. Niemeyer, M., Mescheder, L., Oechsle, M., Geiger, A.: Differentiable volumetric rendering: learning implicit 3D representations without 3D supervision. In: CVPR (2020)

    Google Scholar 

  26. Paszke, A., et al.: Pytorch: an imperative style, high-performance deep learning library. In: NeurIPS (2019)

    Google Scholar 

  27. Schonberger, J.L., Frahm, J.M.: Structure-from-motion revisited. In: CVPR (2016)

    Google Scholar 

  28. Schwarz, K., Liao, Y., Niemeyer, M., Geiger, A.: GRAF: generative radiance fields for 3D-aware image synthesis. In: NeurIPS (2020)

    Google Scholar 

  29. Shih, M.L., Su, S.Y., Kopf, J., Huang, J.B.: 3D photography using context-aware layered depth inpainting. In: CVPR (2020)

    Google Scholar 

  30. Sitzmann, V., Thies, J., Heide, F., Nießner, M., Wetzstein, G., Zollhofer, M.: DeepVoxels: learning persistent 3D feature embeddings. In: CVPR (2019)

    Google Scholar 

  31. Sitzmann, V., Zollhöfer, M., Wetzstein, G.: Scene representation networks: continuous 3D-structure-aware neural scene representations. In: NeurIPS (2019)

    Google Scholar 

  32. Srinivasan, P.P., Deng, B., Zhang, X., Tancik, M., Mildenhall, B., Barron, J.T.: NeRV: neural reflectance and visibility fields for relighting and view synthesis. In: CVPR (2021)

    Google Scholar 

  33. Tancik, M., et al.: Learned initializations for optimizing coordinate-based neural representations. In: CVPR (2021)

    Google Scholar 

  34. Tucker, R., Snavely, N.: Single-view view synthesis with multiplane images. In: CVPR (2020)

    Google Scholar 

  35. Wang, Q., et al.: IBRNet: learning multi-view image-based rendering. In: CVPR (2021)

    Google Scholar 

  36. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE TIP 13, 600–612 (2004)

    Google Scholar 

  37. Wiles, O., Gkioxari, G., Szeliski, R., Johnson, J.: SynSin: end-to-end view synthesis from a single image. In: CVPR (2020)

    Google Scholar 

  38. Xian, W., Huang, J.B., Kopf, J., Kim, C.: Space-time neural irradiance fields for free-viewpoint video. In: CVPR (2021)

    Google Scholar 

  39. Yariv, L., et al.: Multiview neural surface reconstruction by disentangling geometry and appearance. In: NeurIPS (2020)

    Google Scholar 

  40. Yu, A., Ye, V., Tancik, M., Kanazawa, A.: pixelNeRF: neural radiance fields from one or few images. In: CVPR (2021)

    Google Scholar 

  41. Zhang, K., Riegler, G., Snavely, N., Koltun, V.: NeRF++: analyzing and improving neural radiance fields. arXiv:2010.07492 (2020)

  42. Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable effectiveness of deep features as a perceptual metric. In: CVPR (2018)

    Google Scholar 

  43. Zhou, T., Brown, M., Snavely, N., Lowe, D.G.: Unsupervised learning of depth and ego-motion from video. In: CVPR (2017)

    Google Scholar 

  44. Zhou, T., Tucker, R., Flynn, J., Fyffe, G., Snavely, N.: Stereo magnification: learning view synthesis using multiplane images. In: SIGGRAPH (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Di Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, D., Liu, Y., Huang, L., Wang, B., Pan, P. (2022). GeoAug: Data Augmentation for Few-Shot NeRF with Geometry Constraints. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13677. Springer, Cham. https://doi.org/10.1007/978-3-031-19790-1_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19790-1_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19789-5

  • Online ISBN: 978-3-031-19790-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics