Skip to main content

Learning Series-Parallel Lookup Tables for Efficient Image Super-Resolution

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13677))

Included in the following conference series:

Abstract

Lookup table (LUT) has shown its efficacy in low-level vision tasks due to the valuable characteristics of low computational cost and hardware independence. However, recent attempts to address the problem of single image super-resolution (SISR) with lookup tables are highly constrained by the small receptive field size. Besides, their frameworks of single-layer lookup tables limit the extension and generalization capacities of the model. In this paper, we propose a framework of series-parallel lookup tables (SPLUT) to alleviate the above issues and achieve efficient image super-resolution. On the one hand, we cascade multiple lookup tables to enlarge the receptive field of each extracted feature vector. On the other hand, we propose a parallel network which includes two branches of cascaded lookup tables which process different components of the input low-resolution images. By doing so, the two branches collaborate with each other and compensate for the precision loss of discretizing input pixels when establishing lookup tables. Compared to previous lookup table-based methods, our framework has stronger representation abilities with more flexible architectures. Furthermore, we no longer need interpolation methods which introduce redundant computations so that our method can achieve faster inference speed. Extensive experimental results on five popular benchmark datasets show that our method obtains superior SISR performance in a more efficient way. The code is available at https://github.com/zhjy2016/SPLUT.

C. Ma and J. Zhang—Equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Agustsson, E., Timofte, R.: NTIRE 2017 challenge on single image super-resolution: dataset and study. In: CVPR, pp. 126–135 (2017)

    Google Scholar 

  2. Ahn, N., Kang, B., Sohn, K.A.: Fast, accurate, and lightweight super-resolution with cascading residual network. In: ECCV, pp. 252–268 (2018)

    Google Scholar 

  3. Bevilacqua, M., Roumy, A., Guillemot, C., Alberi-Morel, M.L.: Low-complexity single-image super-resolution based on nonnegative neighbor embedding. In: BMVC (2012)

    Google Scholar 

  4. Bilal, M., Khan, A., Karim Khan, M.U., Kyung, C.M.: A low-complexity pedestrian detection framework for smart video surveillance systems. TCSVT 27(10), 2260–2273 (2017)

    Google Scholar 

  5. Chang, C.C., Chou, J.S., Chen, T.S.: An efficient computation of Euclidean distances using approximated look-up table. TCSVT 10(4), 594–599 (2000)

    Google Scholar 

  6. Chang, H., Yeung, D.Y., Xiong, Y.: Super-resolution through neighbor embedding. In: CVPR, vol. 1, p. I. IEEE (2004)

    Google Scholar 

  7. Du, Z., Liu, D., Liu, J., Tang, J., Wu, G., Fu, L.: Fast and memory-efficient network towards efficient image super-resolution. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 853–862 (2022)

    Google Scholar 

  8. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR, pp. 770–778 (2016)

    Google Scholar 

  9. Hendrycks, D., Gimpel, K.: Gaussian error linear units (GELUs). arXiv preprint arXiv:1606.08415 (2016)

  10. Huang, J.B., Singh, A., Ahuja, N.: Single image super-resolution from transformed self-exemplars. In: CVPR, pp. 5197–5206 (2015)

    Google Scholar 

  11. Jo, Y., Kim, S.J.: Practical single-image super-resolution using look-up table. In: CVPR, pp. 691–700 (2021)

    Google Scholar 

  12. Kasson, J.M., Nin, S.I., Plouffe, W., Hafner, J.L.: Performing color space conversions with three-dimensional linear interpolation. J. Electron. Imaging 4(3), 226–250 (1995)

    Article  Google Scholar 

  13. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  14. Lee, C., Monga, V.: Power-constrained RGB-to-RGBW conversion for emissive displays: optimization-based approaches. TCSVT 26(10), 1821–1834 (2016)

    Google Scholar 

  15. Lee, J.Y., Lee, J.J., Park, S.: New lookup tables and searching algorithms for fast H.264/AVC CAVLC decoding. TCSVT 20(7), 1007–1017 (2010)

    Google Scholar 

  16. Lee, R., et al.: Journey towards tiny perceptual super-resolution. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12371, pp. 85–102. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58574-7_6

    Chapter  Google Scholar 

  17. Lee, W., Lee, J., Kim, D., Ham, B.: Learning with privileged information for efficient image super-resolution. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12369, pp. 465–482. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58586-0_28

    Chapter  Google Scholar 

  18. Li, Z., Yang, J., Liu, Z., Yang, X., Jeon, G., Wu, W.: Feedback network for image super-resolution. In: CVPR, pp. 3867–3876 (2019)

    Google Scholar 

  19. Lim, B., Son, S., Kim, H., Nah, S., Mu Lee, K.: Enhanced deep residual networks for single image super-resolution. In: CVPRW, pp. 136–144 (2017)

    Google Scholar 

  20. Liu, J., Tang, J., Wu, G.: Residual feature distillation network for lightweight image super-resolution. In: Bartoli, A., Fusiello, A. (eds.) ECCV 2020. LNCS, vol. 12537, pp. 41–55. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-67070-2_2

    Chapter  Google Scholar 

  21. Luo, X., Xie, Y., Zhang, Y., Qu, Y., Li, C., Fu, Y.: LatticeNet: towards lightweight image super-resolution with lattice block. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12367, pp. 272–289. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58542-6_17

    Chapter  Google Scholar 

  22. Martin, D.R., Fowlkes, C.C., Tal, D., Malik, J.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: ICCV, pp. 416–425 (2001)

    Google Scholar 

  23. Matsui, Y., et al.: Sketch-based manga retrieval using manga109 dataset. Multimed. Tools Appl. 76(20), 21811–21838 (2017)

    Article  Google Scholar 

  24. Mei, Y., Fan, Y., Zhou, Y.: Image super-resolution with non-local sparse attention. In: CVPR, pp. 3517–3526 (2021)

    Google Scholar 

  25. Park, S.J., Son, H., Cho, S., Hong, K.S., Lee, S.: SRFeat: single image super-resolution with feature discrimination. In: ECCV, pp. 439–455 (2018)

    Google Scholar 

  26. Paszke, A., et al.: Automatic differentiation in Pytorch. In: NIPS-W (2017)

    Google Scholar 

  27. Rizvi, S., Nasrabadi, N.: An efficient Euclidean distance computation for vector quantization using a truncated look-up table. TCSVT 5(4), 370–371 (1995)

    Google Scholar 

  28. Shi, W., et al.: Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network. In: CVPR, pp. 1874–1883 (2016)

    Google Scholar 

  29. Song, D., Wang, Y., Chen, H., Xu, C., Xu, C., Tao, D.: AdderSR: towards energy efficient image super-resolution. In: CVPR, pp. 15648–15657 (2021)

    Google Scholar 

  30. Timofte, R., De Smet, V., Van Gool, L.: Anchored neighborhood regression for fast example-based super-resolution. In: ICCV, pp. 1920–1927 (2013)

    Google Scholar 

  31. Timofte, R., De Smet, V., Van Gool, L.: A+: adjusted anchored neighborhood regression for fast super-resolution. In: Cremers, D., Reid, I., Saito, H., Yang, M.-H. (eds.) ACCV 2014. LNCS, vol. 9006, pp. 111–126. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16817-3_8

    Chapter  Google Scholar 

  32. Tsang, S.H., Chan, Y.L., Siu, W.C.: Region-based weighted prediction for coding video with local brightness variations. TCSVT 23(3), 549–561 (2013)

    Google Scholar 

  33. Wang, B., Lu, C., Yan, D., Zhao, Y.: Learning pixel-adaptive weights for portrait photo retouching. arXiv preprint arXiv:2112.03536 (2021)

  34. Wang, L., et al.: Exploring sparsity in image super-resolution for efficient inference. In: CVPR, pp. 4917–4926 (2021)

    Google Scholar 

  35. Wang, T., et al.: Real-time image enhancer via learnable spatial-aware 3D lookup tables. In: ICCV, pp. 2471–2480 (2021)

    Google Scholar 

  36. Wang, X., et al.: ESRGAN: enhanced super-resolution generative adversarial networks. In: ECCVW (2018)

    Google Scholar 

  37. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P., et al.: Image quality assessment: from error visibility to structural similarity. TIP 13(4), 600–612 (2004)

    Google Scholar 

  38. Xin, J., Wang, N., Jiang, X., Li, J., Huang, H., Gao, X.: Binarized neural network for single image super resolution. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12349, pp. 91–107. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58548-8_6

    Chapter  Google Scholar 

  39. Yin, P., Lyu, J., Zhang, S., Osher, S., Qi, Y., Xin, J.: Understanding straight-through estimator in training activation quantized neural nets. arXiv preprint arXiv:1903.05662 (2019)

  40. Zeng, H., Cai, J., Li, L., Cao, Z., Zhang, L.: Learning image-adaptive 3D lookup tables for high performance photo enhancement in real-time. TPAMI (2020)

    Google Scholar 

  41. Zeyde, R., Elad, M., Protter, M.: On single image scale-up using sparse-representations. In: Boissonnat, J.-D., et al. (eds.) Curves and Surfaces 2010. LNCS, vol. 6920, pp. 711–730. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-27413-8_47

    Chapter  Google Scholar 

  42. Zhang, Y., Chen, H., Chen, X., Deng, Y., Xu, C., Wang, Y.: Data-free knowledge distillation for image super-resolution. In: CVPR, pp. 7852–7861 (2021)

    Google Scholar 

  43. Zhang, Y., Tian, Y., Kong, Y., Zhong, B., Fu, Y.: Residual dense network for image super-resolution. In: CVPR, pp. 2472–2481 (2018)

    Google Scholar 

Download references

Acknowledgement

This work was supported in part by the National Key Research and Development Program of China under Grant 2017YFA0700802, in part by the National Natural Science Foundation of China under Grant 62125603 and Grant U1813218, in part by a grant from the Beijing Academy of Artificial Intelligence (BAAI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiwen Lu .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 329 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ma, C., Zhang, J., Zhou, J., Lu, J. (2022). Learning Series-Parallel Lookup Tables for Efficient Image Super-Resolution. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13677. Springer, Cham. https://doi.org/10.1007/978-3-031-19790-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19790-1_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19789-5

  • Online ISBN: 978-3-031-19790-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics