Skip to main content

Style Your Hair: Latent Optimization for Pose-Invariant Hairstyle Transfer via Local-Style-Aware Hair Alignment

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13677))

Included in the following conference series:

Abstract

Editing hairstyle is unique and challenging due to the complexity and delicacy of hairstyle. Although recent approaches significantly improved the hair details, these models often produce undesirable outputs when a pose of a source image is considerably different from that of a target hair image, limiting their real-world applications. HairFIT, a pose-invariant hairstyle transfer model, alleviates this limitation yet still shows unsatisfactory quality in preserving delicate hair textures. To solve these limitations, we propose a high-performing pose-invariant hairstyle transfer model equipped with latent optimization and a newly presented local-style-matching loss. In the StyleGAN2 latent space, we first explore a pose-aligned latent code of a target hair with the detailed textures preserved based on local style matching. Then, our model inpaints the occlusions of the source considering the aligned target hair and blends both images to produce a final output. The experimental results demonstrate that our model has strengths in transferring a hairstyle under larger pose differences and preserving local hairstyle textures. The codes are available at https://github.com/Taeu/Style-Your-Hair.

T. Kim, C. Chung and Y. Kim—Equal contributions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abdal, R., Qin, Y., Wonka, P.: Image2StyleGAN: how to embed images into the StyleGAN latent space? In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 4432–4441 (2019)

    Google Scholar 

  2. Abdal, R., Qin, Y., Wonka, P.: Image2StyleGAN++: how to edit the embedded images? In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 8296–8305 (2020)

    Google Scholar 

  3. Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Süsstrunk, S.: SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI) 34(11), 2274–2282 (2012)

    Article  Google Scholar 

  4. Bulat, A., Tzimiropoulos, G.: How far are we from solving the 2D & 3D face alignment problem? (and a dataset of 230,000 3d facial landmarks). In: Proceedings of the IEEE International Conference on Computer Vision (ICCV) (2017)

    Google Scholar 

  5. Chung, C., et al.: HairFIT: pose-invariant hairstyle transfer via flow-based hair alignment and semantic-region-aware inpainting. In: Proceedings of the British Machine Vision Conference (BMVC). British Machine Vision Association (2021)

    Google Scholar 

  6. Chung, J.S., Nagrani, A., Zisserman, A.: VoxCeleb2: deep speaker recognition. In: Conference of the International Speech Communication Association (INTERSPEECH) (2018)

    Google Scholar 

  7. Gatys, L.A., Ecker, A.S., Bethge, M.: Image style transfer using convolutional neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016)

    Google Scholar 

  8. Goodfellow, I., et al.: Generative adversarial nets. In: Proceedings of the Advances in Neural Information Processing Systems (NeurIPS) (2014)

    Google Scholar 

  9. Harkonen, E., Hertzmann, A., Lehtinen, J., Paris, S.: GANSpace: discovering interpretable GAN controls. In: Proceedings of the Advances in Neural Information Processing Systems (NeurIPS) (2020)

    Google Scholar 

  10. Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs trained by a two time-scale update rule converge to a local Nash equilibrium. In: Proceedings of the Advances in Neural Information Processing Systems (NeurIPS) (2017)

    Google Scholar 

  11. Jiang, W., et al.: PSGAN: pose and expression robust spatial-aware GAN for customizable makeup transfer. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020)

    Google Scholar 

  12. Jo, Y., Park, J.: SC-FEGAN: face editing generative adversarial network with user’s sketch and color. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

    Google Scholar 

  13. Karras, T., Laine, S., Aila, T.: A style-based generator architecture for generative adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

    Google Scholar 

  14. Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J., Aila, T.: Analyzing and improving the image quality of StyleGAN. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020)

    Google Scholar 

  15. Kim, T., et al.: K-hairstyle: a large-scale Korean hairstyle dataset for virtual hair editing and hairstyle classification. In: Proceedings of the IEEE International Conference on Image Processing (ICIP), pp. 1299–1303. IEEE (2021)

    Google Scholar 

  16. Lee, C.H., Liu, Z., Wu, L., Luo, P.: MaskGAN: towards diverse and interactive facial image manipulation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5549–5558 (2020)

    Google Scholar 

  17. Nagrani, A., Chung, J.S., Zisserman, A.: VoxCeleb: a large-scale speaker identification dataset. arXiv preprint arXiv:1706.08612 (2017)

  18. Odena, A., Olah, C., Shlens, J.: Conditional image synthesis with auxiliary classifier GANs. In: Proceedings of the International Conference on Learning Representations (ICLR) (2017)

    Google Scholar 

  19. Portenier, T., Hu, Q., Szabo, A., Bigdeli, S.A., Favaro, P., Zwicker, M.: FaceShop: deep sketch-based face image editing. arXiv preprint arXiv:1804.08972 (2018)

  20. Saha, R., Duke, B., Shkurti, F., Taylor, G., Aarabi, P.: LOHO: latent optimization of hairstyles via orthogonalization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2021)

    Google Scholar 

  21. Shen, Y., Gu, J., Tang, X., Zhou, B.: Interpreting the latent space of GANs for semantic face editing. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2020)

    Google Scholar 

  22. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: Proceedings of the International Conference on Learning Representations (ICLR) (2015)

    Google Scholar 

  23. Tan, Z., et al.: MichiGAN: multi-input-conditioned hair image generation for portrait editing. ACM Trans. Graph. (TOG) 39(4), 1–13 (2020)

    Article  Google Scholar 

  24. Viazovetskyi, Y., Ivashkin, V., Kashin, E.: StyleGAN2 distillation for feed-forward image manipulation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12367, pp. 170–186. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58542-6_11

    Chapter  Google Scholar 

  25. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. (TIP) 13(4), 600–612 (2004)

    Article  Google Scholar 

  26. Xiao, C., Yu, D., Han, X., Zheng, Y., Fu, H.: SketchHairSalon: deep sketch-based hair image synthesis (2021)

    Google Scholar 

  27. Yang, S., Wang, Z., Liu, J., Guo, Z.: Deep plastic surgery: robust and controllable image editing with human-drawn sketches. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12360, pp. 601–617. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58555-6_36

    Chapter  Google Scholar 

  28. Yu, C., Wang, J., Peng, C., Gao, C., Yu, G., Sang, N.: BiSeNet: bilateral segmentation network for real-time semantic segmentation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11217, pp. 334–349. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01261-8_20

    Chapter  Google Scholar 

  29. Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable effectiveness of deep features as a perceptual metric. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)

    Google Scholar 

  30. Zhao, S., et al.: Large scale image completion via co-modulated generative adversarial networks. In: Proceedings of the International Conference on Learning Representations (ICLR) (2021)

    Google Scholar 

  31. Zhu, P., Abdal, R., Femiani, J., Wonka, P.: Barbershop: GAN-based image compositing using segmentation masks (2021)

    Google Scholar 

  32. Zhu, P., Abdal, R., Qin, Y., Femiani, J., Wonka, P.: Improved StyleGAN embedding: where are the good latents? arXiv preprint arXiv:2012.09036 (2020)

  33. Zhuang, P., Koyejo, O., Schwing, A.G.: Enjoy your editing: controllable GANs for image editing via latent space navigation. In: Proceedings of the International Conference on Learning Representations (ICLR) (2021)

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Institute of Information & communications Technology Planning & Evaluation (IITP) grant funded by the Korean government (MSIT) (No. 2019-0-00075), Artificial Intelligence Graduate School Program (KAIST) and the Ministry of Culture, Sports and Tourism and Korea Creative Content Agency (Project Number: R2021040097, Contribution Rate: 50).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaegul Choo .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 12713 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kim, T., Chung, C., Kim, Y., Park, S., Kim, K., Choo, J. (2022). Style Your Hair: Latent Optimization for Pose-Invariant Hairstyle Transfer via Local-Style-Aware Hair Alignment. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13677. Springer, Cham. https://doi.org/10.1007/978-3-031-19790-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19790-1_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19789-5

  • Online ISBN: 978-3-031-19790-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics