Abstract
Given a set of images of a scene, the re-rendering of this scene from novel views and lighting conditions is an important and challenging problem in Computer Vision and Graphics. On the one hand, most existing works in Computer Vision usually impose many assumptions regarding the image formation process, e.g. direct illumination and predefined materials, to make scene parameter estimation tractable. On the other hand, mature Computer Graphics tools allow modeling of complex photo-realistic light transport given all the scene parameters. Combining these approaches, we propose a method for scene relighting under novel views by learning a neural precomputed radiance transfer function, which implicitly handles global illumination effects using novel environment maps. Our method can be solely supervised on a set of real images of the scene under a single unknown lighting condition. To disambiguate the task during training, we tightly integrate a differentiable path tracer in the training process and propose a combination of a synthesized OLAT and a real image loss. Results show that the recovered disentanglement of scene parameters improves significantly over the current state of the art and, thus, also our re-rendering results are more realistic and accurate.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Azinović, D., Li, T.M., Kaplanyan, A., Nießner, M.: Inverse path tracing for joint material and lighting estimation. In: Proceedings of the Computer Vision and Pattern Recognition (CVPR). IEEE (2019)
Bangaru, S., Michel, J., Mu, K., Bernstein, G., Li, T.M., Ragan-Kelley, J.: Systematically differentiating parametric discontinuities. ACM Trans. Graph. 40(107), 107:1–107:17 (2021)
Boss, M., Braun, R., Jampani, V., Barron, J.T., Liu, C., Lensch, H.P.: NeRD: neural reflectance decomposition from image collections. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 12684–12694 (2021)
Boss, M., Jampani, V., Braun, R., Liu, C., Barron, J., Lensch, H.: Neural-PIL: neural pre-integrated lighting for reflectance decomposition. Adv. Neural. Inf. Process. Syst. 34, 10691–10704 (2021)
Chen, Z., et al.: A neural rendering framework for free-viewpoint relighting. In: CVPR (2020)
Community, B.O.: Blender - a 3D modelling and rendering package (2018). https://www.blender.org
Debevec, P., Hawkins, T., Tchou, C., Duiker, H.P., Sarokin, W., Sagar, M.: Acquiring the reflectance field of a human face. In: Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques, pp. 145–156 (2000)
Goel, P., Cohen, L., Guesman, J., Thamizharasan, V., Tompkin, J., Ritchie, D.: Shape from tracing: towards reconstructing 3D object geometry and svbrdf material from images via differentiable path tracing. In: 2020 International Conference on 3D Vision (3DV), pp. 1186–1195. IEEE (2020)
Hao, X., Baby, T., Varshney, A.: Interactive subsurface scattering for translucent meshes. In: Proceedings of the 2003 Symposium on Interactive 3D Graphics, pp. 75–82 (2003)
Jensen, R., Dahl, A., Vogiatzis, G., Tola, E., Aanæs, H.: Large scale multi-view stereopsis evaluation. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition, pp. 406–413. IEEE (2014)
Kajiya, J.T.: The rendering equation. In: Proceedings of the 13th Annual Conference on Computer Graphics and Interactive Techniques, pp. 143–150 (1986)
Kautz, J., Sloan, P.P., Lehtinen, J.: Precomputed radiance transfer: theory and practice. In: ACM SIGGRAPH 2005 Courses, pp. 1–es (2005)
Kautz, J., Snyder, J., Sloan, P.P.J.: Fast arbitrary BRDF shading for low-frequency lighting using spherical harmonics. Rendering Tech. 2(291–296), 1 (2002)
Laffont, P.Y., Bousseau, A., Drettakis, G.: Rich intrinsic image decomposition of outdoor scenes from multiple views. IEEE Trans. Visual. Comput. Graph. 19(2), 210–224 (2012)
Land, E.H., McCann, J.J.: Lightness and retinex theory. Josa 61(1), 1–11 (1971)
Lehtinen, J.: A framework for precomputed and captured light transport. ACM Trans. Graph. (TOG) 26(4), 13-es (2007)
Lehtinen, J., et al.: Noise2noise: learning image restoration without clean data. arXiv preprint arXiv:1803.04189 (2018)
Li, T.M., Aittala, M., Durand, F., Lehtinen, J.: Differentiable monte carlo ray tracing through edge sampling. ACM Trans. Graph. (TOG) 37(6), 1–11 (2018)
Lombardi, S., Nishino, K.: Reflectance and illumination recovery in the wild. IEEE Trans. Pattern Anal. Mach. Intell. 38(1), 129–141 (2015)
Lorensen, W.E., Cline, H.E.: Marching cubes: a high resolution 3D surface construction algorithm. ACM siggraph comput. graph. 21(4), 163–169 (1987)
Lyu, L., Habermann, M., Liu, L., Tewari, A., Theobalt, C., et al.: Efficient and differentiable shadow computation for inverse problems. In: ICCV, pp. 13107–13116 (2021)
Marschner, S.R.: Inverse Rendering for Computer Graphics. Cornell University, Ithaca (1998)
Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng, R.: NeRF: representing scenes as neural radiance fields for view synthesis. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 405–421. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_24
Müller, T., Evans, A., Schied, C., Keller, A.: Instant neural graphics primitives with a multiresolution hash encoding. arXiv:2201.05989 (2022)
Munkberg, J., et al.: Extracting triangular 3d models, materials, and lighting from images. arXiv preprint arXiv:2111.12503 (2021)
Ng, R., Ramamoorthi, R., Hanrahan, P.: All-frequency shadows using non-linear wavelet lighting approximation. In: ACM SIGGRAPH 2003 Papers, pp. 376–381 (2003)
Nimier-David, M., Dong, Z., Jakob, W., Kaplanyan, A.: Material and lighting reconstruction for complex indoor scenes with texture-space differentiable rendering (2021)
Nimier-David, M., Vicini, D., Zeltner, T., Jakob, W.: Mitsuba 2: a retargetable forward and inverse renderer. ACM Trans. Graph. (TOG) 38(6), 1–17 (2019)
Pandey, R., et al.: Total relighting: learning to relight portraits for background replacement, vol. 40 (2021). https://doi.org/10.1145/3450626.3459872
Philip, J., Gharbi, M., Zhou, T., Efros, A.A., Drettakis, G.: Multi-view relighting using a geometry-aware network. ACM Trans. Graph. 38(4), 78–1 (2019)
Philip, J., Morgenthaler, S., Gharbi, M., Drettakis, G.: Free-viewpoint indoor neural relighting from multi-view stereo. ACM Trans. Graph. (TOG) 40(5), 1–18 (2021)
Rainer, G., Bousseau, A., Ritschel, T., Drettakis, G.: Neural precomputed radiance transfer. In: Computer Graphics Forum (Proceedings of Eurographics), vol. 41, no. 2 (2022). https://www-sop.inria.fr/reves/Basilic/2022/RBRD22
Ramamoorthi, R., Hanrahan, P.: A signal-processing framework for inverse rendering. In: Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, pp. 117–128 (2001)
Ramamoorthi, R., Hanrahan, P.: A signal-processing framework for reflection. ACM Trans. Graph. (TOG) 23(4), 1004–1042 (2004)
Ritschel, T., Dachsbacher, C., Grosch, T., Kautz, J.: The state of the art in interactive global illumination. In: Computer Graphics Forum, vol. 31, pp. 160–188. Wiley Online Library (2012)
Sloan, P.P., Kautz, J., Snyder, J.: Precomputed radiance transfer for real-time rendering in dynamic, low-frequency lighting environments. In: Proceedings of the SIGGRAPH, pp. 527–536 (2002)
Sloan, P.P., Luna, B., Snyder, J.: Local, deformable precomputed radiance transfer. ACM Trans. Graph. (TOG) 24(3), 1216–1224 (2005)
Srinivasan, P.P., Deng, B., Zhang, X., Tancik, M., Mildenhall, B., Barron, J.T.: NeRV: neural reflectance and visibility fields for relighting and view synthesis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7495–7504 (2021)
Sun, T., et al.: Light stage super-resolution: continuous high-frequency relighting. ACM Trans. Graph. (TOG) 39(6), 1–12 (2020)
Tewari, A., et al.: Advances in neural rendering. arXiv preprint arXiv:2111.05849 (2021)
Thul, D., Tsiminaki, V., Ladickỳ, L., Pollefeys, M.: Precomputed radiance transfer for reflectance and lighting estimation. In: 2020 International Conference on 3D Vision (3DV), pp. 1147–1156. IEEE (2020)
Tsai, Y.T., Shih, Z.C.: All-frequency precomputed radiance transfer using spherical radial basis functions and clustered tensor approximation. ACM Trans. graph. (TOG) 25(3), 967–976 (2006)
Wang, J., Ramamoorthi, R.: Analytic spherical harmonic coefficients for polygonal area lights. ACM Trans. Graph. (Proc. SIGGRAPH 2018) 37(4), 1–11 (2018)
Wang, P., Liu, L., Liu, Y., Theobalt, C., Komura, T., Wang, W.: NeuS: learning neural implicit surfaces by volume rendering for multi-view reconstruction. arXiv preprint arXiv:2106.10689 (2021)
Wang, Z., Bovik, A., Sheikh, H., Simoncelli, E.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004). https://doi.org/10.1109/TIP.2003.819861
Wu, L., Cai, G., Zhao, S., Ramamoorthi, R.: Analytic spherical harmonic gradients for real-time rendering with many polygonal area lights. ACM Trans. Graph. (TOG) 39(4), 134–1 (2020)
Wu, S., Rupprecht, C., Vedaldi, A.: Unsupervised learning of probably symmetric deformable 3D objects from images in the wild. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1–10 (2020)
Xie, Y., et al.: Neural fields in visual computing and beyond. arXiv preprint arXiv:2111.11426 (2021)
Xu, K., Sun, W.L., Dong, Z., Zhao, D.Y., Wu, R.D., Hu, S.M.: Anisotropic spherical gaussians. ACM Trans. Graph. (TOG) 32(6), 1–11 (2013)
Yu, A., Fridovich-Keil, S., Tancik, M., Chen, Q., Recht, B., Kanazawa, A.: Plenoxels: radiance fields without neural networks. arXiv preprint arXiv:2112.05131 (2021)
Zhang, K., Luan, F., Wang, Q., Bala, K., Snavely, N.: PhySG: inverse rendering with spherical gaussians for physics-based material editing and relighting. In: CVPR (2021)
Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable effectiveness of deep features as a perceptual metric. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 586–595. IEEE Computer Society, Los Alamitos (2018). https://doi.org/10.1109/CVPR.2018.00068, https://doi.ieeecomputersociety.org/10.1109/CVPR.2018.00068
Zhang, X., et al.: Neural light transport for relighting and view synthesis. ACM Trans. Graph. (TOG) 40(1), 1–17 (2021)
Zhang, X., Srinivasan, P.P., Deng, B., Debevec, P., Freeman, W.T., Barron, J.T.: NeRFactor: neural factorization of shape and reflectance under an unknown illumination. ACM Trans. Graph. (TOG) 40(6), 1–18 (2021)
Acknowledgement
We would like to thank Xiuming Zhang for his help with the NeRFactor comparisons. Authors from MPII were supported by the ERC Consolidator Grant 4DRepLy (770784).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Lyu, L., Tewari, A., Leimkühler, T., Habermann, M., Theobalt, C. (2022). Neural Radiance Transfer Fields for Relightable Novel-View Synthesis with Global Illumination. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13677. Springer, Cham. https://doi.org/10.1007/978-3-031-19790-1_10
Download citation
DOI: https://doi.org/10.1007/978-3-031-19790-1_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-19789-5
Online ISBN: 978-3-031-19790-1
eBook Packages: Computer ScienceComputer Science (R0)