Skip to main content

Motion and Appearance Adaptation for Cross-domain Motion Transfer

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13676))

Included in the following conference series:

Abstract

Motion transfer aims to transfer the motion of a driving video to a source image. When there are considerable differences between object in the driving video and that in the source image, traditional single domain motion transfer approaches often produce notable artifacts; for example, the synthesized image may fail to preserve the human shape of the source image (cf. Fig. 1 (a)). To address this issue, in this work, we propose a Motion and Appearance Adaptation (MAA) approach for cross-domain motion transfer, in which we regularize the object in the synthesized image to capture the motion of the object in the driving frame, while still preserving the shape and appearance of the object in the source image. On one hand, considering the object shapes of the synthesized image and the driving frame might be different, we design a shape-invariant motion adaptation module that enforces the consistency of the angles of object parts in two images to capture the motion information. On the other hand, we introduce a structure-guided appearance consistency module designed to regularize the similarity between the corresponding patches of the synthesized image and the source image without affecting the learned motion in the synthesized image. Our proposed MAA model can be trained in an end-to-end manner with a cyclic reconstruction loss, and ultimately produces a satisfactory motion transfer result (cf. Fig. 1 (b)). We conduct extensive experiments on human dancing dataset Mixamo-Video to Fashion-Video and human face dataset Vox-Celeb to Cufs; on both of these, our MAA model outperforms existing methods both quantitatively and qualitatively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Adobe’s mixamo website. https://www.mixamo.com Accessed 3 Nov 2021

  2. Amos, B., Ludwiczuk, B., Satyanarayanan, M., et al.: Openface: a general-purpose face recognition library with mobile applications. CMU School Comput. Sci. 6(2), 20 (2016)

    Google Scholar 

  3. Balakrishnan, G., Zhao, A., Dalca, A.V., Durand, F., Guttag, J.: Synthesizing images of humans in unseen poses. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8340–8348 (2018)

    Google Scholar 

  4. Burkov, E., Pasechnik, I., Grigorev, A., Lempitsky, V.: Neural head reenactment with latent pose descriptors. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13786–13795 (2020)

    Google Scholar 

  5. Chan, C., Ginosar, S., Zhou, T., Efros, A.A.: Everybody dance now. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5933–5942 (2019)

    Google Scholar 

  6. Chen, Y., Li, W., Sakaridis, C., Dai, D., Van Gool, L.: Domain adaptive faster R-CNN for object detection in the wild. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3339–3348 (2018)

    Google Scholar 

  7. Chen, Z., Wang, C., Yuan, B., Tao, D.: Puppeteergan: arbitrary portrait animation with semantic-aware appearance transformation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13518–13527 (2020)

    Google Scholar 

  8. Chu, T., Liu, Y., Deng, J., Li, W., Duan, L.: Denoised maximum classifier discrepancy for source-free unsupervised domain adaptation. In: Thirty-Sixth AAAI Conference on Artificial Intelligence (AAAI-22) (2022)

    Google Scholar 

  9. Deng, J., Li, W., Chen, Y., Duan, L.: Unbiased mean teacher for cross-domain object detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4091–4101 (2021)

    Google Scholar 

  10. Dong, J., Cong, Y., Sun, G., Fang, Z., Ding, Z.: Where and how to transfer: Knowledge aggregation-induced transferability perception for unsupervised domain adaptation. IEEE Trans. Pattern Anal. Mach. Intell. 1–1 (2021)

    Google Scholar 

  11. Dong, J., Cong, Y., Sun, G., Zhong, B., Xu, X.: What can be transferred: unsupervised domain adaptation for endoscopic lesions segmentation. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4022–4031, June 2020

    Google Scholar 

  12. Ganin, Y., Lempitsky, V.: Unsupervised domain adaptation by backpropagation. In: International Conference on Machine Learning, pp. 1180–1189. PMLR (2015)

    Google Scholar 

  13. Gu, K., Zhou, Y., Huang, T.: FLNET: landmark driven fetching and learning network for faithful talking facial animation synthesis. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 10861–10868 (2020)

    Google Scholar 

  14. Hermans, A., Beyer, L., Leibe, B.: In defense of the triplet loss for person re-identification. arXiv preprint arXiv:1703.07737 (2017)

  15. Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: Gans trained by a two time-scale update rule converge to a local Nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  16. Huang, Z., Han, X., Xu, J., Zhang, T.: Few-shot human motion transfer by personalized geometry and texture modeling. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2297–2306 (2021)

    Google Scholar 

  17. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017)

    Google Scholar 

  18. Jakab, T., Gupta, A., Bilen, H., Vedaldi, A.: Unsupervised learning of object landmarks through conditional image generation. In: Proceedings of the 32nd International Conference on Neural Information Processing Systems, pp. 4020–4031 (2018)

    Google Scholar 

  19. Jeon, S., Nam, S., Oh, S.W., Kim, S.J.: Cross-identity motion transfer for arbitrary objects through pose-attentive video reassembling. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12369, pp. 292–308. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58586-0_18

    Chapter  Google Scholar 

  20. Kappel, M., et al.: High-fidelity neural human motion transfer from monocular video. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1541–1550 (2021)

    Google Scholar 

  21. Li, C., Lee, G.H.: From synthetic to real: Unsupervised domain adaptation for animal pose estimation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1482–1491 (2021)

    Google Scholar 

  22. Li, Y., Huang, C., Loy, C.C.: Dense intrinsic appearance flow for human pose transfer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3693–3702 (2019)

    Google Scholar 

  23. Liu, W., Piao, Z., Min, J., Luo, W., Ma, L., Gao, S.: Liquid warping GAN: a unified framework for human motion imitation, appearance transfer and novel view synthesis. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5904–5913 (2019)

    Google Scholar 

  24. Liu, Y., Deng, J., Gao, X., Li, W., Duan, L.: Bapa-net: boundary adaptation and prototype alignment for cross-domain semantic segmentation. In: The IEEE International Conference on Computer Vision (ICCV), October 2021

    Google Scholar 

  25. Liu, Y., Deng, J., Tao, J., Chu, T., Duan, L., Li, W.: Undoing the damage of label shift for cross-domain semantic segmentation. In: The IEEE Conference on Computer Vision and Pattern Recognition(CVPR) (2022)

    Google Scholar 

  26. Ma, L., Jia, X., Sun, Q., Schiele, B., Tuytelaars, T., Van Gool, L.: Pose guided person image generation. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  27. Ma, L., Sun, Q., Georgoulis, S., Van Gool, L., Schiele, B., Fritz, M.: Disentangled person image generation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 99–108 (2018)

    Google Scholar 

  28. Nagrani, A., Chung, J.S., Zisserman, A.: Voxceleb: a large-scale speaker identification dataset. arXiv preprint arXiv:1706.08612 (2017)

  29. Ren, Y., Yu, X., Chen, J., Li, T.H., Li, G.: Deep image spatial transformation for person image generation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7690–7699 (2020)

    Google Scholar 

  30. Siarohin, A., Lathuilière, S., Tulyakov, S., Ricci, E., Sebe, N.: Animating arbitrary objects via deep motion transfer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2377–2386 (2019)

    Google Scholar 

  31. Siarohin, A., Lathuilière, S., Tulyakov, S., Ricci, E., Sebe, N.: First order motion model for image animation. In: Advances in Neural Information Processing Systems, vol. 32, pp. 7137–7147 (2019)

    Google Scholar 

  32. Siarohin, A., Woodford, O.J., Ren, J., Chai, M., Tulyakov, S.: Motion representations for articulated animation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13653–13662 (2021)

    Google Scholar 

  33. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  34. Tao, J., Wang, B., Xu, B., Ge, T., Jiang, Y., Li, W., Duan, L.: Structure-aware motion transfer with deformable anchor model. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3637–3646 (2022)

    Google Scholar 

  35. Tzeng, E., Hoffman, J., Saenko, K., Darrell, T.: Adversarial discriminative domain adaptation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7167–7176 (2017)

    Google Scholar 

  36. Wang, C., Xu, C., Tao, D.: Self-supervised pose adaptation for cross-domain image animation. IEEE Transa Artif. Intell. 1(1), 34–46 (2020)

    Article  Google Scholar 

  37. Wang, X., Tang, X.: Face photo-sketch synthesis and recognition. IEEE Trans. Pattern Anal. Mach. Intell. 31(11), 1955–1967 (2008)

    Article  Google Scholar 

  38. Wiles, O., Koepke, A.S., Zisserman, A.: X2Face: a network for controlling face generation using images, audio, and pose codes. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11217, pp. 690–706. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01261-8_41

    Chapter  Google Scholar 

  39. Xu, B., et al.: Move as you like: image animation in e-commerce scenario. In: Proceedings of the 29th ACM International Conference on Multimedia, pp. 2759–2761 (2021)

    Google Scholar 

  40. Zablotskaia, P., Siarohin, A., Zhao, B., Sigal, L.: DWNET: dense warp-based network for pose-guided human video generation. arXiv preprint arXiv:1910.09139 (2019)

  41. Zhang, S., Zhao, W., Guan, Z., Peng, X., Peng, J.: Keypoint-graph-driven learning framework for object pose estimation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1065–1073 (2021)

    Google Scholar 

  42. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017)

    Google Scholar 

  43. Zhu, Z., Huang, T., Shi, B., Yu, M., Wang, B., Bai, X.: Progressive pose attention transfer for person image generation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2347–2356 (2019)

    Google Scholar 

Download references

Acknowledgement

This work is supported by the Major Project for New Generation of AI under Grant No. 2018AAA0100400, the National Natural Science Foundation of China (Grant No. 62176047), Sichuan Science and Technology Program (No. 2021YFS0374, 2022YFS0600), Beijing Natural Science Foundation (Z190023), and Alibaba Group through Alibaba Innovation Research Program. This work is also partially supported by the Science and Technology on Electronic Information Control Laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xu, B. et al. (2022). Motion and Appearance Adaptation for Cross-domain Motion Transfer. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13676. Springer, Cham. https://doi.org/10.1007/978-3-031-19787-1_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19787-1_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19786-4

  • Online ISBN: 978-3-031-19787-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics