Abstract
Despite the recent advancement of Generative Adversarial Networks (GANs) in learning 3D-aware image synthesis from 2D data, existing methods fail to model indoor scenes due to the large diversity of room layouts and the objects inside. We argue that indoor scenes do not have a shared intrinsic structure, and hence only using 2D images cannot adequately guide the model with the 3D geometry. In this work, we fill in this gap by introducing depth as a 3D prior (Depth is essentially a 2.5D prior, but in this paper we use 3D for simplicity). Compared with other 3D data formats, depth better fits the convolution-based generation mechanism and is more easily accessible in practice. Specifically, we propose a dual-path generator, where one path is responsible for depth generation, whose intermediate features are injected into the other path as the condition for appearance rendering. Such a design eases the 3D-aware synthesis with explicit geometry information. Meanwhile, we introduce a switchable discriminator both to differentiate real v.s. fake domains and to predict the depth from a given input. In this way, the discriminator can take the spatial arrangement into account and advise the generator to learn an appropriate depth condition. Extensive experimental results suggest that our approach is capable of synthesizing indoor scenes with impressively good quality and 3D consistency, significantly outperforming state-of-the-art alternatives. (Project page can be found here.)
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
More details of the baselines can be found in the Supplementary Material.
References
Alhaija, H.A., Mustikovela, S.K., Geiger, A., Rother, C.: Geometric image synthesis. In: Asian Conference on Computer Vision (2018)
Ashburner, J., Friston, K.J.: Voxel-based morphometry-the methods. Neuroimage 11, 805–821 (2000)
Brock, A., Donahue, J., Simonyan, K.: Large scale GAN training for high fidelity natural image synthesis. In: International Conference on Learning Representations (2019)
Chan, E., Monteiro, M., Kellnhofer, P., Wu, J., Wetzstein, G.: pi-GAN: periodic implicit generative adversarial networks for 3D-aware image synthesis. In: Conference on Computer Vision and Pattern Recognition (2021)
Chan, E.R., et al.: Efficient geometry-aware 3D generative adversarial networks. arXiv preprint arXiv:2112.07945 (2021)
Chen, X., Cohen-Or, D., Chen, B., Mitra, N.J.: Towards a neural graphics pipeline for controllable image generation. In: Computer Graphics Forum (2021)
Cheung, G.K., Kanade, T., Bouguet, J.Y., Holler, M.: A real time system for robust 3D voxel reconstruction of human motions. In: IEEE Conference on Computer Vision and Pattern Recognition (2000)
Cordts, M., et al.: The cityscapes dataset for semantic urban scene understanding. In: IEEE Conference on Computer Vision and Pattern Recognition (2016)
Deng, Y., Yang, J., Xiang, J., Tong, X.: Gram: Generative radiance manifolds for 3D-aware image generation. In: Conference on Computer Vision and Pattern Recognition (2022)
DeVries, T., Bautista, M.A., Srivastava, N., Taylor, G.W., Susskind, J.M.: Unconstrained scene generation with locally conditioned radiance fields. In: International Conference on Computer Vision (2021)
Fu, H., Gong, M., Wang, C., Batmanghelich, K., Tao, D.: Deep ordinal regression network for monocular depth estimation. In: IEEE Conference on Computer Vision and Pattern Recognition (2018)
Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems (2014)
Gu, J., Liu, L., Wang, P., Theobalt, C.: Stylenerf: A style-based 3D-aware generator for high-resolution image synthesis. In: International Conference on Learning Representations (2022)
Härkönen, E., Hertzmann, A., Lehtinen, J., Paris, S.: GANSpace: discovering interpretable GAN controls. In: Advances in Neural Information Processing Systems (2020)
Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs trained by a two time-scale update rule converge to a local nash equilibrium. In: Advances in Neural Information Processing Systems (2017)
Karras, T., Aila, T., Laine, S., Lehtinen, J.: Progressive growing of GANs for improved quality, stability, and variation. In: International Conference on Learning Representations (2018)
Karras, T., et al.: Alias-free generative adversarial networks. In: Advances in Neural Information Processing Systems (2021)
Karras, T., Laine, S., Aila, T.: A style-based generator architecture for generative adversarial networks. In: IEEE Conference on Computer Vision and Pattern Recognition (2019)
Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J., Aila, T.: Analyzing and improving the image quality of StyleGAN. In: IEEE Conference on Computer Vision and Pattern Recognition (2020)
Menze, M., Geiger, A.: Object scene flow for autonomous vehicles. In: IEEE Conference on Computer Vision and Pattern Recognition (2015)
Michalkiewicz, M., Pontes, J.K., Jack, D., Baktashmotlagh, M., Eriksson, A.: Implicit surface representations as layers in neural networks. In: International Conference on Computer Vision (2019)
Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng, R.: NeRF: representing scenes as neural radiance fields for view synthesis. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 405–421. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_24
Silberman, N., Hoiem, D., Kohli, P., Fergus, R.: Indoor segmentation and support inference from RGBD images. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7576, pp. 746–760. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33715-4_54
Nguyen-Phuoc, T., Li, C., Theis, L., Richardt, C., Yang, Y.L.: HoloGAN: Unsupervised learning of 3d representations from natural images. In: International Conference on Learning Representations (2019)
Nguyen-Phuoc, T., Richardt, C., Mai, L., Yang, Y.L., Mitra, N.: BlockGAN: Learning 3D object-aware scene representations from unlabelled images. In: Advances in Neural Information Processing Systems (2020)
Niemeyer, M., Geiger, A.: Campari: camera-aware decomposed generative neural radiance fields. arXiv preprint arXiv:2103.17269 (2021)
Niemeyer, M., Geiger, A.: GIRAFFE: representing scenes as compositional generative neural feature fields. In: Conference on Computer Vision and Pattern Recognition (2021)
Noguchi, A., Harada, T.: RGBD-GAN: Unsupervised 3D representation learning from natural image datasets via RGBD image synthesis. In: International Conference on Learning Representations (2020)
Ohtake, Y., Belyaev, A., Seidel, H.P.: Ridge-valley lines on meshes via implicit surface fitting. In: ACM SIGGRAPH (2004)
Or-El, R., Luo, X., Shan, M., Shechtman, E., Park, J.J., Kemelmacher-Shlizerman, I.: StyleSDF: high-resolution 3D-consistent image and geometry generation. arXiv preprint arXiv:2112.11427 (2021)
Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: mixing datasets for zero-shot cross-dataset transfer. IEEE Trans. Pattern Anal. Mach, Intell (2020)
Rusinkiewicz, S., Levoy, M.: Efficient variants of the ICP algorithm. In: International Conference on 3-D digital imaging and modeling (2001)
Rusu, R.B., Cousins, S.: 3D is here: point cloud library (PCL). In: IEEE International Conference on Robotics and Automation (2011)
Schnabel, R., Wahl, R., Klein, R.: Efficient RANSAC for point-cloud shape detection. In: Computer Graphics Forum (2007)
Schwarz, K., Liao, Y., Niemeyer, M., Geiger, A.: GRAF: generative radiance fields for 3D-aware image synthesis. In: Advance Neural Information Processing Systems (2020)
Shen, Y., Yang, C., Tang, X., Zhou, B.: InterFaceGAN: interpreting the disentangled face representation learned by GANs. IEEE Trans. Pattern Anal. Mach, Intell (2020)
Shen, Y., Zhou, B.: Closed-form factorization of latent semantics in GANs. In: IEEE Conference on Computer Vision and Pattern Recognition (2021)
Sitzmann, V., Martel, J.N., Bergman, A.W., Lindell, D.B., Wetzstein, G.: Implicit neural representation with periodic activation functions. In: Advances in Neural Information Processing Systems (2020)
Wang, X., Gupta, A.: Generative image modeling using style and structure adversarial networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 318–335. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_20
Wu, J., Zhang, C., Xue, T., Freeman, W.T., Tenenbaum, J.B.: Learning a probabilistic latent space of object shapes via 3D generative-adversarial modeling. In: Advances in Neural Information Processing Systems (2016)
Xu, Y., Peng, S., Yang, C., Shen, Y., Zhou, B.: 3D-aware image synthesis via learning structural and textural representations. In: IEEE Conference on Computer Vision and Pattern Recognition (2022)
Yang, C., Shen, Y., Zhou, B.: Semantic hierarchy emerges in deep generative representations for scene synthesis. Int. J. Comput. Vis. 129(5), 1451–1466 (2021). https://doi.org/10.1007/s11263-020-01429-5
Yin, W., Zhang, J., Wang, O., Niklaus, S., Mai, L., Chen, S., Shen, C.: Learning to recover 3D scene shape from a single image. In: IEEE Conference on Computer Vision and Pattern Recognition (2021)
Yu, F., Seff, A., Zhang, Y., Song, S., Funkhouser, T., Xiao, J.: LSUN: construction of a large-scale image dataset using deep learning with humans in the loop. arXiv preprint arXiv:1506.03365 (2015)
Zhou, Q.Y., Park, J., Koltun, V.: Open3D: a modern library for 3D data processing. arXiv:1801.09847 (2018)
Zhu, J., et al.: Low-rank subspaces in GANs. In: Advances in Neural Information Processing Systems (2021)
Zhu, J.Y., et al.: Visual object networks: Image generation with disentangled 3D representations. In: Advances in Neural Information Processing Systems (2018)
Acknowledgement
We thank Yinghao Xu and Sida Peng for their fruitful discussions and valuable comments.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Shi, Z., Shen, Y., Zhu, J., Yeung, DY., Chen, Q. (2022). 3D-Aware Indoor Scene Synthesis with Depth Priors. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13676. Springer, Cham. https://doi.org/10.1007/978-3-031-19787-1_23
Download citation
DOI: https://doi.org/10.1007/978-3-031-19787-1_23
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-19786-4
Online ISBN: 978-3-031-19787-1
eBook Packages: Computer ScienceComputer Science (R0)