Skip to main content

Augmentation of rPPG Benchmark Datasets: Learning to Remove and Embed rPPG Signals via Double Cycle Consistent Learning from Unpaired Facial Videos

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13676))

Included in the following conference series:

Abstract

Remote estimation of human physiological condition has attracted urgent attention during the pandemic of COVID-19. In this paper, we focus on the estimation of remote photoplethysmography (rPPG) from facial videos and address the deficiency issues of large-scale benchmarking datasets. We propose an end-to-end RErPPG-Net, including a Removal-Net and an Embedding-Net, to augment existing rPPG benchmark datasets. In the proposed augmentation scenario, the Removal-Net will first erase any inherent rPPG signals in the input video and then the Embedding-Net will embed another PPG signal into the video to generate an augmented video carrying the specified PPG signal. To train the model from unpaired videos, we propose a novel double-cycle consistent constraint to enforce the RErPPG-Net to learn to robustly and accurately remove and embed the delicate rPPG signals. The new benchmark “Aug-rPPG dataset” is augmented from UBFC-rPPG and PURE datasets and includes 5776 videos from 42 subjects with 76 different rPPG signals. Our experimental results show that existing rPPG estimators indeed benefit from the augmented dataset and achieve significant improvement when fine-tuned on the new benchmark. The code and dataset are available at https://github.com/nthumplab/RErPPGNet.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bobbia, S., Macwan, R., Benezeth, Y., Mansouri, A., Dubois, J.: Unsupervised skin tissue segmentation for remote photoplethysmography. Pattern Recogn. Lett. 124, 82–90 (2019)

    Article  Google Scholar 

  2. Bousefsaf, F., Pruski, A., Maaoui, C.: 3d convolutional neural networks for remote pulse rate measurement and mapping from facial video. Appl. Sci. 9(20), 4364 (2019)

    Article  Google Scholar 

  3. Chen, W., McDuff, D.: DeepPhys: video-based physiological measurement using convolutional attention networks. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11206, pp. 356–373. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01216-8_22

    Chapter  Google Scholar 

  4. De Haan, G., Jeanne, V.: Robust pulse rate from chrominance-based rPPG. IEEE Trans. Biomed. Eng. 60(10), 2878–2886 (2013)

    Article  Google Scholar 

  5. Lee, E., Chen, E., Lee, C.-Y.: Meta-rPPG: remote heart rate estimation using a transductive meta-learner. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12372, pp. 392–409. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58583-9_24

    Chapter  Google Scholar 

  6. Li, Q., Liu, Y., Sun, Z.: Age progression and regression with spatial attention modules. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp. 11378–11385 (2020)

    Google Scholar 

  7. Li, X., Chen, J., Zhao, G., Pietikainen, M.: Remote heart rate measurement from face videos under realistic situations. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp. 4264–4271 (2014)

    Google Scholar 

  8. Lu, H., Han, H., Zhou, S.K.: Dual-GAN: joint BVP and noise modeling for remote physiological measurement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12404–12413 (2021)

    Google Scholar 

  9. McDuff, D., Liu, X., Hernandez, J., Wood, E., Baltrusaitis, T.: Synthetic data for multi-parameter camera-based physiological sensing. In: 2021 43rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3742–3748. IEEE (2021)

    Google Scholar 

  10. Niu, X., Han, H., Shan, S., Chen, X.: SynRHythm: learning a deep heart rate estimator from general to specific. In: 2018 24th International Conference on Pattern Recognition (ICPR), pp. 3580–3585. IEEE (2018)

    Google Scholar 

  11. Niu, X., Han, H., Shan, S., Chen, X.: VIPL-HR: a multi-modal database for pulse estimation from less-constrained face video. In: Jawahar, C.V., Li, H., Mori, G., Schindler, K. (eds.) ACCV 2018. LNCS, vol. 11365, pp. 562–576. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20873-8_36

    Chapter  Google Scholar 

  12. Poh, M.Z., McDuff, D.J., Picard, R.W.: Advancements in noncontact, multiparameter physiological measurements using a webcam. IEEE Trans. Biomed. Eng. 58(1), 7–11 (2010)

    Article  Google Scholar 

  13. Song, R., Chen, H., Cheng, J., Li, C., Liu, Y., Chen, X.: PulseGAN: learning to generate realistic pulse waveforms in remote photoplethysmography. IEEE J. Biomed. Health Inform. 25(5), 1373–1384 (2021)

    Article  Google Scholar 

  14. Špetlík, R., Franc, V., Matas, J.: Visual heart rate estimation with convolutional neural network. In: Proceedings of the British machine vision conference, Newcastle, UK, pp. 3–6 (2018)

    Google Scholar 

  15. Stricker, R., Müller, S., Gross, H.M.: Non-contact video-based pulse rate measurement on a mobile service robot. In: The 23rd IEEE International Symposium on Robot and Human Interactive Communication, pp. 1056–1062. IEEE (2014)

    Google Scholar 

  16. Tsou, Y.Y., Lee, Y.A., Hsu, C.T.: Multi-task learning for simultaneous video generation and remote photoplethysmography estimation. In: Proceedings of the Asian Conference on Computer Vision (2020)

    Google Scholar 

  17. Tsou, Y.Y., Lee, Y.A., Hsu, C.T., Chang, S.H.: Siamese-rPPG network: remote photoplethysmography signal estimation from face videos. In: Proceedings of the 35th Annual ACM Symposium on Applied Computing, pp. 2066–2073 (2020)

    Google Scholar 

  18. Verkruysse, W., Svaasand, L.O., Nelson, J.S.: Remote plethysmographic imaging using ambient light. Opt. Express 16(26), 21434–21445 (2008)

    Article  Google Scholar 

  19. Wang, T.C., et al.: Video-to-video synthesis. arXiv preprint arXiv:1808.06601 (2018)

  20. Wang, W., den Brinker, A.C., Stuijk, S., De Haan, G.: Algorithmic principles of remote PPG. IEEE Trans. Biomed. Eng. 64(7), 1479–1491 (2016)

    Article  Google Scholar 

  21. Wang, W., Stuijk, S., De Haan, G.: A novel algorithm for remote photoplethysmography: spatial subspace rotation. IEEE Trans. Biomed. Eng. 63(9), 1974–1984 (2015)

    Article  Google Scholar 

  22. Wang, Z.K., Kao, Y., Hsu, C.T.: Vision-based heart rate estimation via a two-stream CNN. In: 2019 IEEE International Conference on Image Processing (ICIP), pp. 3327–3331. IEEE (2019)

    Google Scholar 

  23. Yu, Z., Peng, W., Li, X., Hong, X., Zhao, G.: Remote heart rate measurement from highly compressed facial videos: an end-to-end deep learning solution with video enhancement. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 151–160 (2019)

    Google Scholar 

  24. Zhang, X., Ng, R., Chen, Q.: Single image reflection separation with perceptual losses. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4786–4794 (2018)

    Google Scholar 

  25. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chiou-Ting Hsu .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (zip 18359 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hsieh, CJ., Chung, WH., Hsu, CT. (2022). Augmentation of rPPG Benchmark Datasets: Learning to Remove and Embed rPPG Signals via Double Cycle Consistent Learning from Unpaired Facial Videos. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13676. Springer, Cham. https://doi.org/10.1007/978-3-031-19787-1_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19787-1_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19786-4

  • Online ISBN: 978-3-031-19787-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics