Abstract
Remote estimation of human physiological condition has attracted urgent attention during the pandemic of COVID-19. In this paper, we focus on the estimation of remote photoplethysmography (rPPG) from facial videos and address the deficiency issues of large-scale benchmarking datasets. We propose an end-to-end RErPPG-Net, including a Removal-Net and an Embedding-Net, to augment existing rPPG benchmark datasets. In the proposed augmentation scenario, the Removal-Net will first erase any inherent rPPG signals in the input video and then the Embedding-Net will embed another PPG signal into the video to generate an augmented video carrying the specified PPG signal. To train the model from unpaired videos, we propose a novel double-cycle consistent constraint to enforce the RErPPG-Net to learn to robustly and accurately remove and embed the delicate rPPG signals. The new benchmark “Aug-rPPG dataset” is augmented from UBFC-rPPG and PURE datasets and includes 5776 videos from 42 subjects with 76 different rPPG signals. Our experimental results show that existing rPPG estimators indeed benefit from the augmented dataset and achieve significant improvement when fine-tuned on the new benchmark. The code and dataset are available at https://github.com/nthumplab/RErPPGNet.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bobbia, S., Macwan, R., Benezeth, Y., Mansouri, A., Dubois, J.: Unsupervised skin tissue segmentation for remote photoplethysmography. Pattern Recogn. Lett. 124, 82–90 (2019)
Bousefsaf, F., Pruski, A., Maaoui, C.: 3d convolutional neural networks for remote pulse rate measurement and mapping from facial video. Appl. Sci. 9(20), 4364 (2019)
Chen, W., McDuff, D.: DeepPhys: video-based physiological measurement using convolutional attention networks. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11206, pp. 356–373. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01216-8_22
De Haan, G., Jeanne, V.: Robust pulse rate from chrominance-based rPPG. IEEE Trans. Biomed. Eng. 60(10), 2878–2886 (2013)
Lee, E., Chen, E., Lee, C.-Y.: Meta-rPPG: remote heart rate estimation using a transductive meta-learner. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12372, pp. 392–409. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58583-9_24
Li, Q., Liu, Y., Sun, Z.: Age progression and regression with spatial attention modules. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp. 11378–11385 (2020)
Li, X., Chen, J., Zhao, G., Pietikainen, M.: Remote heart rate measurement from face videos under realistic situations. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp. 4264–4271 (2014)
Lu, H., Han, H., Zhou, S.K.: Dual-GAN: joint BVP and noise modeling for remote physiological measurement. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12404–12413 (2021)
McDuff, D., Liu, X., Hernandez, J., Wood, E., Baltrusaitis, T.: Synthetic data for multi-parameter camera-based physiological sensing. In: 2021 43rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3742–3748. IEEE (2021)
Niu, X., Han, H., Shan, S., Chen, X.: SynRHythm: learning a deep heart rate estimator from general to specific. In: 2018 24th International Conference on Pattern Recognition (ICPR), pp. 3580–3585. IEEE (2018)
Niu, X., Han, H., Shan, S., Chen, X.: VIPL-HR: a multi-modal database for pulse estimation from less-constrained face video. In: Jawahar, C.V., Li, H., Mori, G., Schindler, K. (eds.) ACCV 2018. LNCS, vol. 11365, pp. 562–576. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20873-8_36
Poh, M.Z., McDuff, D.J., Picard, R.W.: Advancements in noncontact, multiparameter physiological measurements using a webcam. IEEE Trans. Biomed. Eng. 58(1), 7–11 (2010)
Song, R., Chen, H., Cheng, J., Li, C., Liu, Y., Chen, X.: PulseGAN: learning to generate realistic pulse waveforms in remote photoplethysmography. IEEE J. Biomed. Health Inform. 25(5), 1373–1384 (2021)
Špetlík, R., Franc, V., Matas, J.: Visual heart rate estimation with convolutional neural network. In: Proceedings of the British machine vision conference, Newcastle, UK, pp. 3–6 (2018)
Stricker, R., Müller, S., Gross, H.M.: Non-contact video-based pulse rate measurement on a mobile service robot. In: The 23rd IEEE International Symposium on Robot and Human Interactive Communication, pp. 1056–1062. IEEE (2014)
Tsou, Y.Y., Lee, Y.A., Hsu, C.T.: Multi-task learning for simultaneous video generation and remote photoplethysmography estimation. In: Proceedings of the Asian Conference on Computer Vision (2020)
Tsou, Y.Y., Lee, Y.A., Hsu, C.T., Chang, S.H.: Siamese-rPPG network: remote photoplethysmography signal estimation from face videos. In: Proceedings of the 35th Annual ACM Symposium on Applied Computing, pp. 2066–2073 (2020)
Verkruysse, W., Svaasand, L.O., Nelson, J.S.: Remote plethysmographic imaging using ambient light. Opt. Express 16(26), 21434–21445 (2008)
Wang, T.C., et al.: Video-to-video synthesis. arXiv preprint arXiv:1808.06601 (2018)
Wang, W., den Brinker, A.C., Stuijk, S., De Haan, G.: Algorithmic principles of remote PPG. IEEE Trans. Biomed. Eng. 64(7), 1479–1491 (2016)
Wang, W., Stuijk, S., De Haan, G.: A novel algorithm for remote photoplethysmography: spatial subspace rotation. IEEE Trans. Biomed. Eng. 63(9), 1974–1984 (2015)
Wang, Z.K., Kao, Y., Hsu, C.T.: Vision-based heart rate estimation via a two-stream CNN. In: 2019 IEEE International Conference on Image Processing (ICIP), pp. 3327–3331. IEEE (2019)
Yu, Z., Peng, W., Li, X., Hong, X., Zhao, G.: Remote heart rate measurement from highly compressed facial videos: an end-to-end deep learning solution with video enhancement. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 151–160 (2019)
Zhang, X., Ng, R., Chen, Q.: Single image reflection separation with perceptual losses. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4786–4794 (2018)
Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Hsieh, CJ., Chung, WH., Hsu, CT. (2022). Augmentation of rPPG Benchmark Datasets: Learning to Remove and Embed rPPG Signals via Double Cycle Consistent Learning from Unpaired Facial Videos. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13676. Springer, Cham. https://doi.org/10.1007/978-3-031-19787-1_21
Download citation
DOI: https://doi.org/10.1007/978-3-031-19787-1_21
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-19786-4
Online ISBN: 978-3-031-19787-1
eBook Packages: Computer ScienceComputer Science (R0)