Skip to main content

Make-A-Scene: Scene-Based Text-to-Image Generation with Human Priors

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13675))

Included in the following conference series:

Abstract

Recent text-to-image generation methods provide a simple yet exciting conversion capability between text and image domains. While these methods have incrementally improved the generated image fidelity and text relevancy, several pivotal gaps remain unanswered, limiting applicability and quality. We propose a novel text-to-image method that addresses these gaps by (i) enabling a simple control mechanism complementary to text in the form of a scene, (ii) introducing elements that substantially improve the tokenization process by employing domain-specific knowledge over key image regions (faces and salient objects), and (iii) adapting classifier-free guidance for the transformer use case. Our model achieves state-of-the-art FID and human evaluation results, unlocking the ability to generate high fidelity images in a resolution of \(512\times 512\) pixels, significantly improving visual quality. Through scene controllability, we introduce several new capabilities: (i) Scene editing, (ii) text editing with anchor scenes, (iii) overcoming out-of-distribution text prompts, and (iv) story illustration generation, as demonstrated in the story we wrote.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Advice, S.G.S.: Syracuse post standard, March 28, 18 (1911)

    Google Scholar 

  2. Barratt, S., Sharma, R.: A note on the inception score. arXiv preprint arXiv:1801.01973 (2018)

  3. Brock, A., Donahue, J., Simonyan, K.: Large scale GAN training for high fidelity natural image synthesis. arXiv preprint arXiv:1809.11096 (2018)

  4. Brown, T., et al.: Language models are few-shot learners. In: Advances in Neural Information Processing Systems, vol. 33, pp. 1877–1901 (2020)

    Google Scholar 

  5. Bulat, A., Tzimiropoulos, G.: How far are we from solving the 2D & 3D face alignment problem? (and a dataset of 230,000 3D facial landmarks). In: International Conference on Computer Vision (2017)

    Google Scholar 

  6. Cao, Q., Shen, L., Xie, W., Parkhi, O.M., Zisserman, A.: VGGFace2: a dataset for recognising faces across pose and age. arXiv preprint arXiv:1710.08092 (2017)

  7. Changpinyo, S., Sharma, P., Ding, N., Soricut, R.: Conceptual 12M: pushing web-scale image-text pre-training to recognize long-tail visual concepts. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3558–3568 (2021)

    Google Scholar 

  8. Chen, M., et al.: Generative pretraining from pixels. In: III, H.D., Singh, A. (eds.) Proceedings of the 37th International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 119, pp. 1691–1703. PMLR (2020). https://proceedings.mlr.press/v119/chen20s.html

  9. Crowson, K.: Classifier Free Guidance for Auto-regressive Transformers (2021). https://twitter.com/RiversHaveWings/status/1478093658716966912

  10. Desai, K., Kaul, G., Aysola, Z., Johnson, J.: RedCaps: web-curated image-text data created by the people, for the people. arXiv preprint arXiv:2111.11431 (2021)

  11. Dhariwal, P., Nichol, A.: Diffusion models beat GANs on image synthesis. In: Advances in Neural Information Processing Systems, vol. 34 (2021)

    Google Scholar 

  12. Ding, M., et al.: CogView: mastering text-to-image generation via transformers. In: Advances in Neural Information Processing Systems, vol. 34 (2021)

    Google Scholar 

  13. Esser, P., Rombach, R., Ommer, B.: Taming transformers for high-resolution image synthesis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12873–12883 (2021)

    Google Scholar 

  14. Fourcade, M.M.: L’Arche de Noé: réseau Alliance, 1940–1945. Plon (1968)

    Google Scholar 

  15. Gafni, O., Ashual, O., Wolf, L.: Single-shot freestyle dance reenactment. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 882–891 (2021)

    Google Scholar 

  16. Gafni, O., Wolf, L., Taigman, Y.: Live face de-identification in video. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9378–9387 (2019)

    Google Scholar 

  17. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, vol. 27 (2014)

    Google Scholar 

  18. Gregor, K., Danihelka, I., Graves, A., Rezende, D., Wierstra, D.: DRAW: a recurrent neural network for image generation. In: International Conference on Machine Learning, pp. 1462–1471. PMLR (2015)

    Google Scholar 

  19. Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs trained by a two time-scale update rule converge to a local Nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  20. Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. In: Advances in Neural Information Processing Systems, vol. 33, pp. 6840–6851 (2020)

    Google Scholar 

  21. Ho, J., Saharia, C., Chan, W., Fleet, D.J., Norouzi, M., Salimans, T.: Cascaded diffusion models for high fidelity image generation. J. Mach. Learn. Res. 23(47), 1–33 (2022)

    MathSciNet  Google Scholar 

  22. Ho, J., Salimans, T.: Classifier-free diffusion guidance. In: NeurIPS 2021 Workshop on Deep Generative Models and Downstream Applications (2021)

    Google Scholar 

  23. Hong, S., Yang, D., Choi, J., Lee, H.: Inferring semantic layout for hierarchical text-to-image synthesis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7986–7994 (2018)

    Google Scholar 

  24. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017)

    Google Scholar 

  25. Ivan, T.: Fathers and Sons. Pandora’s Box (2017)

    Google Scholar 

  26. Jang, E., Gu, S., Poole, B.: Categorical reparameterization with Gumbel-Softmax. arXiv preprint arXiv:1611.01144 (2016)

  27. Janson, H.W., Janson, A.F., Marmor, M.: History of Art. Thames and Hudson London (1991)

    Google Scholar 

  28. Judd, T., Durand, F., Torralba, A.: A benchmark of computational models of saliency to predict human fixations (2012)

    Google Scholar 

  29. Karras, T., et al.: Alias-free generative adversarial networks. In: Advances in Neural Information Processing Systems, vol. 34 (2021)

    Google Scholar 

  30. Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J., Aila, T.: Analyzing and improving the image quality of StyleGAN. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8110–8119 (2020)

    Google Scholar 

  31. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114 (2013)

  32. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, vol. 25 (2012)

    Google Scholar 

  33. Li, B., Qi, X., Lukasiewicz, T., Torr, P.: Controllable text-to-image generation. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

    Google Scholar 

  34. Li, P., Xu, Y., Wei, Y., Yang, Y.: Self-correction for human parsing. IEEE Trans. Pattern Anal. Mach. Intell. (2020). https://doi.org/10.1109/TPAMI.2020.3048039

  35. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2980–2988 (2017)

    Google Scholar 

  36. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  37. Liu, M.Y., Breuel, T., Kautz, J.: Unsupervised image-to-image translation networks. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  38. Maddison, C.J., Mnih, A., Teh, Y.W.: The concrete distribution: a continuous relaxation of discrete random variables. arXiv preprint arXiv:1611.00712 (2016)

  39. Mansimov, E., Parisotto, E., Ba, J.L., Salakhutdinov, R.: Generating images from captions with attention. arXiv preprint arXiv:1511.02793 (2015)

  40. Nichol, A., et al.: Glide: towards photorealistic image generation and editing with text-guided diffusion models. arXiv preprint arXiv:2112.10741 (2021)

  41. Van den Oord, A., Kalchbrenner, N., Espeholt, L., Vinyals, O., Graves, A., et al.: Conditional image generation with PixelCNN decoders. In: Advances in Neural Information Processing Systems, vol. 29 (2016)

    Google Scholar 

  42. Park, T., Liu, M.Y., Wang, T.C., Zhu, J.Y.: Semantic image synthesis with spatially-adaptive normalization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2337–2346 (2019)

    Google Scholar 

  43. Parmar, N., et al.: Image transformer. In: International Conference on Machine Learning, pp. 4055–4064. PMLR (2018)

    Google Scholar 

  44. Radford, A., et al.: Learning transferable visual models from natural language supervision. In: International Conference on Machine Learning, pp. 8748–8763. PMLR (2021)

    Google Scholar 

  45. Ramesh, A., e al.: Zero-shot text-to-image generation. In: International Conference on Machine Learning, pp. 8821–8831. PMLR (2021)

    Google Scholar 

  46. Ramesh, A., et al.: Zero-shot text-to-image generation (ICML spotlight) (2021). https://icml.cc/virtual/2021/spotlight/9430

  47. Razavi, A., Van den Oord, A., Vinyals, O.: Generating diverse high-fidelity images with VQ-VAE-2. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

    Google Scholar 

  48. Reed, S., Akata, Z., Yan, X., Logeswaran, L., Schiele, B., Lee, H.: Generative adversarial text to image synthesis. In: International Conference on Machine Learning, pp. 1060–1069. PMLR (2016)

    Google Scholar 

  49. Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., Chen, X.: Improved techniques for training GANs. In: Advances in Neural Information Processing Systems, vol. 29 (2016)

    Google Scholar 

  50. Sennrich, R., Haddow, B., Birch, A.: Neural machine translation of rare words with subword units. arXiv preprint arXiv:1508.07909 (2015)

  51. Sharma, P., Ding, N., Goodman, S., Soricut, R.: Conceptual captions: a cleaned, hypernymed, image alt-text dataset for automatic image captioning. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 2556–2565 (2018)

    Google Scholar 

  52. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  53. Sohl-Dickstein, J., Weiss, E., Maheswaranathan, N., Ganguli, S.: Deep unsupervised learning using nonequilibrium thermodynamics. In: International Conference on Machine Learning, pp. 2256–2265. PMLR (2015)

    Google Scholar 

  54. Tao, M., et al.: DF-GAN: deep fusion generative adversarial networks for text-to-image synthesis. arXiv preprint arXiv:2008.05865 (2020)

  55. Thomee, B., et al.: YFCC100M: the new data in multimedia research. Commun. ACM 59(2), 64–73 (2016)

    Article  Google Scholar 

  56. Tseng, H.Y., Jiang, L., Liu, C., Yang, M.H., Yang, W.: Regularizing generative adversarial networks under limited data. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7921–7931 (2021)

    Google Scholar 

  57. Vahdat, A., Kautz, J.: NVAE: a deep hierarchical variational autoencoder. In: Advances in Neural Information Processing Systems, vol. 33, pp. 19667–19679 (2020)

    Google Scholar 

  58. Van Den Oord, A., Vinyals, O., et al.: Neural discrete representation learning. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  59. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  60. Wang, T.C., et al.: Video-to-video synthesis. arXiv preprint arXiv:1808.06601 (2018)

  61. Wang, T.C., Liu, M.Y., Zhu, J.Y., Tao, A., Kautz, J., Catanzaro, B.: High-resolution image synthesis and semantic manipulation with conditional GANs. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8798–8807 (2018)

    Google Scholar 

  62. Wu, Y., Kirillov, A., Massa, F., Lo, W.Y., Girshick, R.: Detectron2 (2019). https://github.com/facebookresearch/detectron2

  63. Xu, T., et al.: AttnGAN: fine-grained text to image generation with attentional generative adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1316–1324 (2018)

    Google Scholar 

  64. Ye, H., Yang, X., Takac, M., Sunderraman, R., Ji, S.: Improving text-to-image synthesis using contrastive learning. arXiv preprint arXiv:2107.02423 (2021)

  65. Yun, K., Peng, Y., Samaras, D., Zelinsky, G.J., Berg, T.L.: Studying relationships between human gaze, description, and computer vision. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 739–746 (2013)

    Google Scholar 

  66. Zhang, H., Koh, J.Y., Baldridge, J., Lee, H., Yang, Y.: Cross-modal contrastive learning for text-to-image generation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 833–842 (2021)

    Google Scholar 

  67. Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable effectiveness of deep features as a perceptual metric. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 586–595 (2018)

    Google Scholar 

  68. Zhang, Z., et al.: M6-UFC: unifying multi-modal controls for conditional image synthesis. arXiv preprint arXiv:2105.14211 (2021)

  69. Zhou, Y., et al.: LAFITE: towards language-free training for text-to-image generation. arXiv preprint arXiv:2111.13792 (2021)

  70. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017)

    Google Scholar 

  71. Zhu, M., Pan, P., Chen, W., Yang, Y.: DM-GAN: dynamic memory generative adversarial networks for text-to-image synthesis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5802–5810 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oran Gafni .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 13270 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gafni, O., Polyak, A., Ashual, O., Sheynin, S., Parikh, D., Taigman, Y. (2022). Make-A-Scene: Scene-Based Text-to-Image Generation with Human Priors. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13675. Springer, Cham. https://doi.org/10.1007/978-3-031-19784-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19784-0_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19783-3

  • Online ISBN: 978-3-031-19784-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics