Skip to main content

Designing One Unified Framework for High-Fidelity Face Reenactment and Swapping

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13675))

Included in the following conference series:

Abstract

Face reenactment and swapping share a similar identity and attribute manipulating pattern, but most methods treat them separately, which is redundant and practical-unfriendly. In this paper, we propose an effective end-to-end unified framework to achieve both tasks. Unlike existing methods that directly utilize pre-estimated structures and do not fully exploit their potential similarity, our model sufficiently transfers identity and attribute based on learned disentangled representations to generate high-fidelity faces. Specifically, Feature Disentanglement first disentangles identity and attribute unsupervisedly. Then the proposed Attribute Transfer (AttrT) employs learned Feature Displacement Fields to transfer the attribute granularly, and Identity Transfer (IdT) explicitly models identity-related feature interaction to adaptively control the identity fusion. We joint AttrT and IdT according to their intrinsic relationship to further facilitate each task, i.e., help improve identity consistency in reenactment and attribute preservation in swapping. Extensive experiments demonstrate the superiority of our method. Code is available at https://github.com/xc-csc101/UniFace.

C. Xu and J. Zhang—Equal contributions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bao, J., Chen, D., Wen, F., Li, H., Hua, G.: Towards open-set identity preserving face synthesis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6713–6722 (2018)

    Google Scholar 

  2. Blanz, V., Vetter, T.: A morphable model for the synthesis of 3D faces. In: Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques, pp. 187–194 (1999)

    Google Scholar 

  3. Burkov, E., Pasechnik, I., Grigorev, A., Lempitsky, V.: Neural head reenactment with latent pose descriptors. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13786–13795 (2020)

    Google Scholar 

  4. Cao, M., et al.: UniFaceGAN: a unified framework for temporally consistent facial video editing. IEEE Trans. Image Process. 30, 6107–6116 (2021)

    Article  Google Scholar 

  5. Chen, R., Chen, X., Ni, B., Ge, Y.: SimSwap: an efficient framework for high fidelity face swapping. In: Proceedings of the 28th ACM International Conference on Multimedia, pp. 2003–2011 (2020)

    Google Scholar 

  6. Chen, Z., Wang, C., Yuan, B., Tao, D.: PuppeteerGAN: arbitrary portrait animation with semantic-aware appearance transformation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13518–13527 (2020)

    Google Scholar 

  7. Chung, J.S., Nagrani, A., Zisserman, A.: VoxCeleb2: deep speaker recognition. arXiv preprint arXiv:1806.05622 (2018)

  8. Deng, J., Guo, J., Xue, N., Zafeiriou, S.: ArcFace: additive angular margin loss for deep face recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4690–4699 (2019)

    Google Scholar 

  9. Deng, Y., Yang, J., Chen, D., Wen, F., Tong, X.: Disentangled and controllable face image generation via 3D imitative-contrastive learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5154–5163 (2020)

    Google Scholar 

  10. Deng, Y., Yang, J., Xu, S., Chen, D., Jia, Y., Tong, X.: Accurate 3D face reconstruction with weakly-supervised learning: from single image to image set. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (2019)

    Google Scholar 

  11. Doukas, M.C., Zafeiriou, S., Sharmanska, V.: HeadGAN: one-shot neural head synthesis and editing. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 14398–14407 (2021)

    Google Scholar 

  12. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, vol. 27 (2014)

    Google Scholar 

  13. Ha, S., Kersner, M., Kim, B., Seo, S., Kim, D.: MarioNETte: few-shot face reenactment preserving identity of unseen targets. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 10893–10900 (2020)

    Google Scholar 

  14. Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs trained by a two time-scale update rule converge to a local Nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  15. Huang, P.H., Yang, F.E., Wang, Y.C.F.: Learning identity-invariant motion representations for cross-id face reenactment. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7084–7092 (2020)

    Google Scholar 

  16. Huang, X., Belongie, S.: Arbitrary style transfer in real-time with adaptive instance normalization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1501–1510 (2017)

    Google Scholar 

  17. Karras, T., Aila, T., Laine, S., Lehtinen, J.: Progressive growing of GANs for improved quality, stability, and variation. arXiv preprint arXiv:1710.10196 (2017)

  18. Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J., Aila, T.: Analyzing and improving the image quality of StyleGAN. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8110–8119 (2020)

    Google Scholar 

  19. Kim, H., et al.: Deep video portraits. ACM Trans. Graph. (TOG) 37(4), 1–14 (2018)

    Article  Google Scholar 

  20. Kim, H., Choi, Y., Kim, J., Yoo, S., Uh, Y.: Exploiting spatial dimensions of latent in GAN for real-time image editing. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 852–861 (2021)

    Google Scholar 

  21. Koujan, M.R., Doukas, M.C., Roussos, A., Zafeiriou, S.: Head2Head: video-based neural head synthesis. In: 2020 15th IEEE International Conference on Automatic Face and Gesture Recognition, FG 2020, pp. 16–23. IEEE (2020)

    Google Scholar 

  22. Li, J., Li, Z., Cao, J., Song, X., He, R.: Faceinpainter: high fidelity face adaptation to heterogeneous domains. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5089–5098 (2021)

    Google Scholar 

  23. Li, L., Bao, J., Yang, H., Chen, D., Wen, F.: FaceShifter: towards high fidelity and occlusion aware face swapping. arXiv preprint arXiv:1912.13457 (2019)

  24. Liu, K., Cao, G., Zhou, F., Liu, B., Duan, J., Qiu, G.: Towards disentangling latent space for unsupervised semantic face editing. IEEE Trans. Image Process. 31, 1475–1489 (2022)

    Article  Google Scholar 

  25. Mechrez, R., Talmi, I., Zelnik-Manor, L.: The contextual loss for image transformation with non-aligned data. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 768–783 (2018)

    Google Scholar 

  26. Ngo, L.M., Karaoglu, S., Gevers, T., et al.: Unified application of style transfer for face swapping and reenactment. In: Proceedings of the Asian Conference on Computer Vision (2020)

    Google Scholar 

  27. Nirkin, Y., Keller, Y., Hassner, T.: FSGAN: subject agnostic face swapping and reenactment. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 7184–7193 (2019)

    Google Scholar 

  28. Nitzan, Y., Bermano, A., Li, Y., Cohen-Or, D.: Face identity disentanglement via latent space mapping. arXiv preprint arXiv:2005.07728 (2020)

  29. Peng, B., Fan, H., Wang, W., Dong, J., Lyu, S.: A unified framework for high fidelity face swap and expression reenactment. IEEE Trans. Circuits Syst. Video Technol. 32, 3673–3684 (2021)

    Article  Google Scholar 

  30. Perov, I., et al.: DeepFaceLab: a simple, flexible and extensible face swapping framework. arXiv preprint arXiv:2005.05535 (2020)

  31. Ren, Y., Li, G., Chen, Y., Li, T.H., Liu, S.: PIRenderer: controllable portrait image generation via semantic neural rendering. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 13759–13768 (2021)

    Google Scholar 

  32. Rossler, A., Cozzolino, D., Verdoliva, L., Riess, C., Thies, J., Nießner, M.: Faceforensics++: learning to detect manipulated facial images. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1–11 (2019)

    Google Scholar 

  33. Siarohin, A., Lathuilière, S., Tulyakov, S., Ricci, E., Sebe, N.: Animating arbitrary objects via deep motion transfer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2377–2386 (2019)

    Google Scholar 

  34. Siarohin, A., Lathuilière, S., Tulyakov, S., Ricci, E., Sebe, N.: First order motion model for image animation. In: Advances in Neural Information Processing Systems, vol. 32, pp. 7137–7147 (2019)

    Google Scholar 

  35. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  36. Thies, J., Zollhöfer, M., Nießner, M.: Deferred neural rendering: image synthesis using neural textures. ACM Trans. Graph. (TOG) 38(4), 1–12 (2019)

    Article  Google Scholar 

  37. Thies, J., Zollhofer, M., Stamminger, M., Theobalt, C., Nießner, M.: Face2Face: real-time face capture and reenactment of RGB videos. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2387–2395 (2016)

    Google Scholar 

  38. Wang, H., et al.: CosFace: large margin cosine loss for deep face recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5265–5274 (2018)

    Google Scholar 

  39. Wang, Y., et al.: HifiFace: 3D shape and semantic prior guided high fidelity face swapping. arXiv preprint arXiv:2106.09965 (2021)

  40. Wiles, O., Koepke, A., Zisserman, A.: X2Face: a network for controlling face generation using images, audio, and pose codes. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 670–686 (2018)

    Google Scholar 

  41. Wu, W., Zhang, Y., Li, C., Qian, C., Loy, C.C.: ReenactGAN: learning to reenact faces via boundary transfer. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 603–619 (2018)

    Google Scholar 

  42. Zakharov, E., Ivakhnenko, A., Shysheya, A., Lempitsky, V.: Fast bi-layer neural synthesis of one-shot realistic head avatars. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12357, pp. 524–540. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58610-2_31

    Chapter  Google Scholar 

  43. Zakharov, E., Shysheya, A., Burkov, E., Lempitsky, V.: Few-shot adversarial learning of realistic neural talking head models. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9459–9468 (2019)

    Google Scholar 

  44. Zeng, X., Pan, Y., Wang, M., Zhang, J., Liu, Y.: Realistic face reenactment via self-supervised disentangling of identity and pose. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 12757–12764 (2020)

    Google Scholar 

  45. Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. In: International Conference on Machine Learning, pp. 7354–7363. PMLR (2019)

    Google Scholar 

  46. Zhang, J., et al.: FReeNet: multi-identity face reenactment. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5326–5335 (2020)

    Google Scholar 

  47. Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable effectiveness of deep features as a perceptual metric. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 586–595 (2018)

    Google Scholar 

  48. Zhang, Z., Li, L., Ding, Y., Fan, C.: Flow-guided one-shot talking face generation with a high-resolution audio-visual dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3661–3670 (2021)

    Google Scholar 

  49. Zheng, Y., Huang, Y.K., Tao, R., Shen, Z., Savvides, M.: Unsupervised disentanglement of linear-encoded facial semantics. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3917–3926 (2021)

    Google Scholar 

  50. Zhu, Y., Li, Q., Wang, J., Xu, C.Z., Sun, Z.: One shot face swapping on megapixels. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4834–4844 (2021)

    Google Scholar 

Download references

Acknowledgments

This work is supported by the Key R &D Program Project of Zhejiang Province (2021C01035).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Liu .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 3386 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xu, C. et al. (2022). Designing One Unified Framework for High-Fidelity Face Reenactment and Swapping. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13675. Springer, Cham. https://doi.org/10.1007/978-3-031-19784-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19784-0_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19783-3

  • Online ISBN: 978-3-031-19784-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics