Abstract
Visual counterfeits (We refer to CNN-generated images as counterfeits throughout this paper.) are increasingly causing an existential conundrum in mainstream media with rapid evolution in neural image synthesis methods. Though detection of such counterfeits has been a taxing problem in the image forensics community, a recent class of forensic detectors – universal detectors – are able to surprisingly spot counterfeit images regardless of generator architectures, loss functions, training datasets, and resolutions [61]. This intriguing property suggests the possible existence of transferable forensic features (T-FF) in universal detectors. In this work, we conduct the first analytical study to discover and understand T-FF in universal detectors. Our contributions are 2-fold: 1) We propose a novel forensic feature relevance statistic (FF-RS) to quantify and discover T-FF in universal detectors and, 2) Our qualitative and quantitative investigations uncover an unexpected finding: color is a critical T-FF in universal detectors. Code and models are available at https://keshik6.github.io/transferable-forensic-features/.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein GAN (2017)
Bach, S., Binder, A., Montavon, G., Klauschen, F., Müller, K.R., Samek, W.: On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation. PLoS ONE 10(7), e0130140 (2015)
Bau, D., Zhou, B., Khosla, A., Oliva, A., Torralba, A.: Network dissection: quantifying interpretability of deep visual representations. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6541–6549 (2017)
Bau, D., et al.: GAN dissection: visualizing and understanding generative adversarial networks. In: International Conference on Learning Representations (2018)
Binder, A., Montavon, G., Lapuschkin, S., Müller, K.-R., Samek, W.: Layer-wise relevance propagation for neural networks with local renormalization layers. In: Villa, A.E.P., Masulli, P., Pons Rivero, A.J. (eds.) ICANN 2016. LNCS, vol. 9887, pp. 63–71. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44781-0_8
Brock, A., Donahue, J., Simonyan, K.: Large scale GAN training for high fidelity natural image synthesis. In: International Conference on Learning Representations (2019). https://openreview.net/forum?id=B1xsqj09Fm
Chai, L., Bau, D., Lim, S.-N., Isola, P.: What makes fake images detectable? Understanding properties that generalize. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12371, pp. 103–120. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58574-7_7
Chandrasegaran, K., Tran, N.T., Cheung, N.M.: A closer look at Fourier spectrum discrepancies for CNN-generated images detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 7200–7209, June 2021
Chen, C., Li, O., Tao, C., Barnett, A.J., Su, J., Rudin, C.: This looks like that: deep learning for interpretable image recognition. Curran Associates Inc., Red Hook (2019)
Chen, J., Song, L., Wainwright, M.J., Jordan, M.I.: L-shapley and C-shapley: efficient model interpretation for structured data. In: International Conference on Learning Representations (2019). https://openreview.net/forum?id=S1E3Ko09F7
Choi, Y., Choi, M., Kim, M., Ha, J.W., Kim, S., Choo, J.: StarGAN: unified generative adversarial networks for multi-domain image-to-image translation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2018)
Choi, Y., Uh, Y., Yoo, J., Ha, J.W.: StarGAN v2: diverse image synthesis for multiple domains. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2020
Cozzolino, D., Thies, J., Rössler, A., Riess, C., Nießner, M., Verdoliva, L.: ForensicTransfer: weakly-supervised domain adaptation for forgery detection. arXiv preprint arXiv:1812.02510 (2018)
Desai, S.S., Ramaswamy, H.G.: Ablation-CAM: visual explanations for deep convolutional network via gradient-free localization. In: 2020 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 972–980 (2020)
Dhurandhar, A., et al.: Explanations based on the missing: towards contrastive explanations with pertinent negatives. In: Proceedings of the 32nd International Conference on Neural Information Processing Systems, NIPS 2018, pp. 590–601. Curran Associates Inc., Red Hook (2018)
Durall, R., Keuper, M., Keuper, J.: Watch your up-convolution: CNN based generative deep neural networks are failing to reproduce spectral distributions. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2020
Dzanic, T., Shah, K., Witherden, F.: Fourier spectrum discrepancies in deep network generated images. In: Thirty-Fourth Annual Conference on Neural Information Processing Systems (NeurIPS), December 2020
Frank, J., Eisenhofer, T., Schönherr, L., Fischer, A., Kolossa, D., Holz, T.: Leveraging frequency analysis for deep fake image recognition. In: International Conference on Machine Learning, pp. 3247–3258. PMLR (2020)
Fu, R., Hu, Q., Dong, X., Guo, Y., Gao, Y., Li, B.: Axiom-based grad-CAM: towards accurate visualization and explanation of CNNs. In: BMVC (2020)
Gal, Y., Ghahramani, Z.: Dropout as a Bayesian approximation: representing model uncertainty in deep learning. In: Balcan, M.F., Weinberger, K.Q. (eds.) Proceedings of the 33rd International Conference on Machine Learning. Proceedings of Machine Learning Research, New York, USA, 20–22 June 2016, vol. 48, pp. 1050–1059. PMLR (2016). https://proceedings.mlr.press/v48/gal16.html
Goodfellow, I., et al.: Generative adversarial nets. In: Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems, vol. 27, pp. 2672–2680. Curran Associates, Inc. (2014). https://proceedings.neurips.cc/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
Hao, K., Heaven, W.D.: The year deepfakes went mainstream, December 2020. https://www.technologyreview.com/2020/12/24/1015380/best-ai-deepfakes-of-2020/
Harrison, E.: Shockingly realistic Tom Cruise deepfakes go viral on TikTok, February 2021. https://www.independent.co.uk/arts-entertainment/films/news/tom-cruise-deepfake-tiktok-video-b1808000.html
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2016
Jiang, P.T., Zhang, C.B., Hou, Q., Cheng, M.M., Wei, Y.: LayerCAM: exploring hierarchical class activation maps for localization. IEEE Trans. Image Process. 30, 5875–5888 (2021)
Karras, T., Aila, T., Laine, S., Lehtinen, J.: Progressive growing of GANs for improved quality, stability, and variation. In: International Conference on Learning Representations (2018). https://openreview.net/forum?id=Hk99zCeAb
Karras, T., Aittala, M., Hellsten, J., Laine, S., Lehtinen, J., Aila, T.: Training generative adversarial networks with limited data. In: Larochelle, H., Ranzato, M., Hadsell, R., Balcan, M.F., Lin, H. (eds.) Advances in Neural Information Processing Systems, vol. 33, pp. 12104–12114. Curran Associates, Inc. (2020). https://proceedings.neurips.cc/paper/2020/file/8d30aa96e72440759f74bd2306c1fa3d-Paper.pdf
Karras, T., Laine, S., Aila, T.: A style-based generator architecture for generative adversarial networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2019
Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J., Aila, T.: Analyzing and improving the image quality of StyleGAN. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2020
Khayatkhoei, M., Elgammal, A.: Spatial frequency bias in convolutional generative adversarial networks, October 2020
Ledig, C., et al.: Photo-realistic single image super-resolution using a generative adversarial network. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 105–114 (2017). https://doi.org/10.1109/CVPR.2017.19
Lim, S.K., Loo, Y., Tran, N.T., Cheung, N.M., Roig, G., Elovici, Y.: DOPING: generative data augmentation for unsupervised anomaly detection with GAN. In: 18th IEEE International Conference on Data Mining, ICDM 2018, pp. 1122–1127. Institute of Electrical and Electronics Engineers Inc. (2018)
Lloyd, S.: Least squares quantization in PCM. IEEE Trans. Inf. Theory 28(2), 129–137 (1982). https://doi.org/10.1109/TIT.1982.1056489
Lundberg, S.M., Lee, S.I.: A unified approach to interpreting model predictions. In: Guyon, I., et al. (eds.) Advances in Neural Information Processing Systems, vol. 30. Curran Associates, Inc. (2017). https://proceedings.neurips.cc/paper/2017/file/8a20a8621978632d76c43dfd28b67767-Paper.pdf
Luo, Y., Zhang, Y., Yan, J., Liu, W.: Generalizing face forgery detection with high-frequency features. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16317–16326 (2021)
van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9(86), 2579–2605 (2008). http://jmlr.org/papers/v9/vandermaaten08a.html
Mahmud, A.H.: Deep dive into deepfakes: frighteningly real and sometimes used for the wrong things, October 2021. https://www.channelnewsasia.com/singapore/deepfakes-ai-security-threat-face-swapping-2252161
Marra, F., Gragnaniello, D., Cozzolino, D., Verdoliva, L.: Detection of GAN-generated fake images over social networks. In: 2018 IEEE Conference on Multimedia Information Processing and Retrieval (MIPR), pp. 384–389 (2018). https://doi.org/10.1109/MIPR.2018.00084
Marra, F., Gragnaniello, D., Verdoliva, L., Poggi, G.: Do GANs leave artificial fingerprints? In: 2019 IEEE Conference on Multimedia Information Processing and Retrieval (MIPR), pp. 506–511. IEEE (2019)
McCloskey, S., Albright, M.: Detecting GAN-generated imagery using saturation cues. In: 2019 IEEE International Conference on Image Processing (ICIP), pp. 4584–4588. IEEE (2019)
Muhammad, M.B., Yeasin, M.: Eigen-CAM: class activation map using principal components. In: 2020 International Joint Conference on Neural Networks (IJCNN), pp. 1–7. IEEE (2020)
Nataraj, L., et al.: Detecting GAN generated fake images using co-occurrence matrices. Electron. Imaging 2019(5), 532-1 (2019)
News, C.: Synthetic media: how deepfakes could soon change our world, October 2021. https://www.cbsnews.com/news/deepfake-artificial-intelligence-60-minutes-2021-10-10/
Park, T., Liu, M.Y., Wang, T.C., Zhu, J.Y.: Semantic image synthesis with spatially-adaptive normalization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2337–2346 (2019)
Park, T., Liu, M.Y., Wang, T.C., Zhu, J.Y.: Semantic image synthesis with spatially-adaptive normalization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2019
Pearson, K.: LIII. on lines and planes of closest fit to systems of points in space. Lond. Edinb. Dublin Philos. Mag. J. Sci. 2(11), 559–572 (1901). https://doi.org/10.1080/14786440109462720
Razavi, A., van den Oord, A., Vinyals, O.: Generating diverse high-fidelity images with VQ-VAE-2. In: Wallach, H., Larochelle, H., Beygelzimer, A., d’ Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 32, pp. 14866–14876. Curran Associates, Inc. (2019). https://proceedings.neurips.cc/paper/2019/file/5f8e2fa1718d1bbcadf1cd9c7a54fb8c-Paper.pdf
Rossler, A., Cozzolino, D., Verdoliva, L., Riess, C., Thies, J., Nießner, M.: FaceForensics++: learning to detect manipulated facial images. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1–11 (2019)
Schwarz, K., Liao, Y., Geiger, A.: On the frequency bias of generative models. In: Advances in Neural Information Processing Systems, vol. 34 (2021)
Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-CAM: visual explanations from deep networks via gradient-based localization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 618–626 (2017)
Simonite, T.: What happened to the deepfake threat to the election? November 2020. https://www.wired.com/story/what-happened-deepfake-threat-election/
Springenberg, J.T., Dosovitskiy, A., Brox, T., Riedmiller, M.A.: Striving for simplicity: the all convolutional net. In: Bengio, Y., LeCun, Y. (eds.) 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, 7–9 May 2015, Workshop Track Proceedings (2015). arxiv.org/abs/1412.6806
Srinivas, S., Fleuret, F.: Full-gradient representation for neural network visualization. In: Advances in Neural Information Processing Systems, vol. 32 (2019)
Strumbelj, E., Kononenko, I.: An efficient explanation of individual classifications using game theory. J. Mach. Learn. Res. 11, 1–18 (2010)
Tan, M., Le, Q.: EfficientNet: rethinking model scaling for convolutional neural networks. In: International Conference on Machine Learning, pp. 6105–6114. PMLR (2019)
Tran, N.-T., Bui, T.-A., Cheung, N.-M.: Dist-GAN: an improved GAN using distance constraints. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) Computer Vision – ECCV 2018. LNCS, vol. 11218, pp. 387–401. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01264-9_23
Tran, N.T., Tran, V.H., Nguyen, B.N., Yang, L., Cheung, N.M.M.: Self-supervised GAN: analysis and improvement with multi-class minimax game. In: Wallach, H., Larochelle, H., Beygelzimer, A., d’ Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 32. Curran Associates, Inc. (2019). https://proceedings.neurips.cc/paper/2019/file/d04cb95ba2bea9fd2f0daa8945d70f11-Paper.pdf
Tran, N.T., Tran, V.H., Nguyen, N.B., Nguyen, T.K., Cheung, N.M.: On data augmentation for GAN training. IEEE Trans. Image Process. 30, 1882–1897 (2021)
Wang, H., et al.: Score-CAM: score-weighted visual explanations for convolutional neural networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 24–25 (2020)
Wang, R., et al.: FakeSpotter: a simple yet robust baseline for spotting AI-synthesized fake faces. In: Proceedings of the Twenty-Ninth International Conference on International Joint Conferences on Artificial Intelligence, pp. 3444–3451 (2021)
Wang, S.Y., Wang, O., Zhang, R., Owens, A., Efros, A.A.: CNN-generated images are surprisingly easy to spot... for now. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2020
Yu, N., Davis, L.S., Fritz, M.: Attributing fake images to GANs: learning and analyzing GAN fingerprints. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 7556–7566 (2019)
Zhang, X., Karaman, S., Chang, S.: Detecting and simulating artifacts in GAN fake images. In: 2019 IEEE International Workshop on Information Forensics and Security (WIFS), pp. 1–6 (2019). https://doi.org/10.1109/WIFS47025.2019.9035107
Zhao, S., Liu, Z., Lin, J., Zhu, J.Y., Han, S.: Differentiable augmentation for data-efficient GAN training. In: Conference on Neural Information Processing Systems (NeurIPS) (2020)
Zhao, Y., Ding, H., Huang, H., Cheung, N.M.: A closer look at few-shot image generation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9140–9150 (2022)
Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017)
Acknowledgements
This research is supported by the National Research Foundation, Singapore under its AI Singapore Programmes (AISG Award No.: AISG2-RP-2021-021; AISG Award No.: AISG-100E2018-005). This project is also supported by SUTD project PIE-SGP-AI-2018-01. Alexander Binder was supported by the SFI Visual Intelligence, project no. 309439 of the Research Council of Norway.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Chandrasegaran, K., Tran, NT., Binder, A., Cheung, NM. (2022). Discovering Transferable Forensic Features for CNN-Generated Images Detection. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13675. Springer, Cham. https://doi.org/10.1007/978-3-031-19784-0_39
Download citation
DOI: https://doi.org/10.1007/978-3-031-19784-0_39
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-19783-3
Online ISBN: 978-3-031-19784-0
eBook Packages: Computer ScienceComputer Science (R0)