Skip to main content

GAN with Multivariate Disentangling for Controllable Hair Editing

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Abstract

Hair editing is an essential but challenging task in portrait editing considering the complex geometry and material of hair. Existing methods have achieved promising results by editing through a reference photo, user-painted mask, or guiding strokes. However, when a user provides no reference photo or hardly paints a desirable mask, these works fail to edit. Going a further step, we propose an efficiently controllable method that can provide a set of sliding bars to do continuous and fine hair editing. Meanwhile, it also naturally supports discrete editing through a reference photo and user-painted mask. Specifically, we propose a generative adversarial network with a multivariate Gaussian disentangling module. Firstly, an encoder disentangles the hair’s major attributes, including color, texture, and shape, to separate latent representations. The latent representation of each attribute is modeled as a standard multivariate Gaussian distribution, to make each dimension of an attribute be changed continuously and finely. Benefiting from the Gaussian distribution, any manual editing including sliding a bar, providing a reference photo, and painting a mask can be easily made, which is flexible and friendly for users to interact with. Finally, with changed latent representations, the decoder outputs a portrait with the edited hair. Experiments show that our method can edit each attribute’s dimension continuously and separately. Besides, when editing through reference images and painted masks like existing methods, our method achieves comparable results in terms of FID and visualization. Codes can be found at https://github.com/XuyangGuo/CtrlHair.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Burgess, C.P., et al.: MONet: unsupervised scene decomposition and representation. arXiv preprint arXiv:1901.11390 (2019)

  2. Chai, M., Ren, J., Tulyakov, S.: Neural hair rendering. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12363, pp. 371–388. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58523-5_22

    Chapter  Google Scholar 

  3. Chen, X., Duan, Y., Houthooft, R., Schulman, J., Sutskever, I., Abbeel, P.: InfoGAN: interpretable representation learning by information maximizing generative adversarial nets. In: Neural Information Processing Systems (NIPS) (2016)

    Google Scholar 

  4. Choi, Y., Choi, M., Kim, M., Ha, J.W., Kim, S., Choo, J.: StarGAN: unified generative adversarial networks for multi-domain image-to-image translation. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 8789–8797 (2018)

    Google Scholar 

  5. Choi, Y., Uh, Y., Yoo, J., Ha, J.W.: StarGAN v2: diverse image synthesis for multiple domains. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 8188–8197 (2020)

    Google Scholar 

  6. Goodfellow, I., et al.: Generative adversarial nets. In: Neural Information Processing Systems (NIPS) (2014)

    Google Scholar 

  7. He, Z., Zuo, W., Kan, M., Shan, S., Chen, X.: AttGAN: facial attribute editing by only changing what you want. IEEE Trans. Image Process. 28(11), 5464–5478 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  8. Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs trained by a two time-scale update rule converge to a local Nash equilibrium. Adv. Neural Inf. Process. Syst. (2017)

    Google Scholar 

  9. Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and super-resolution. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 694–711. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_43

    Chapter  Google Scholar 

  10. Karras, T., Aila, T., Laine, S., Lehtinen, J.: Progressive growing of GANs for improved quality, stability, and variation. In: International Conference on Learning Representations (ICLR) (2018)

    Google Scholar 

  11. Karras, T., Laine, S., Aila, T.: A style-based generator architecture for generative adversarial networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (2019)

    Google Scholar 

  12. Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J., Aila, T.: Analyzing and improving the image quality of StyleGAN. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 8110–8119 (2020)

    Google Scholar 

  13. Lee, C.H., Liu, Z., Wu, L., Luo, P.: MaskGAN: towards diverse and interactive facial image manipulation. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5549–5558 (2020)

    Google Scholar 

  14. Liu, M., et al.: STGAN: a unified selective transfer network for arbitrary image attribute editing. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3673–3682 (2019)

    Google Scholar 

  15. Mirza, M., Osindero, S.: Conditional generative adversarial nets. arXiv preprint arXiv:1411.1784 (2014)

  16. Odena, A., Olah, C., Shlens, J.: Conditional image synthesis with auxiliary classifier GANs. In: International Conference on Machine Learning (ICML), pp. 2642–2651 (2017)

    Google Scholar 

  17. Or-El, R., Sengupta, S., Fried, O., Shechtman, E., Kemelmacher-Shlizerman, I.: Lifespan age transformation synthesis. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12351, pp. 739–755. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58539-6_44

    Chapter  Google Scholar 

  18. Park, T., Liu, M.Y., Wang, T.C., Zhu, J.Y.: Semantic image synthesis with spatially-adaptive normalization. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2337–2346 (2019)

    Google Scholar 

  19. Perarnau, G., Van De Weijer, J., Raducanu, B., Álvarez, J.M.: Invertible conditional GANs for image editing. arXiv preprint arXiv:1611.06355 (2016)

  20. Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep convolutional generative adversarial networks. In: International Conference on Learning Representations (ICLR) (2015)

    Google Scholar 

  21. Saha, R., Duke, B., Shkurti, F., Taylor, G.W., Aarabi, P.: LOHO: latent optimization of hairstyles via orthogonalization. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1984–1993 (2021)

    Google Scholar 

  22. Shen, W., Liu, R.: Learning residual images for face attribute manipulation. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4030–4038 (2017)

    Google Scholar 

  23. Shoshan, A., Bhonker, N., Kviatkovsky, I., Medioni, G.: GAN-control: explicitly controllable GANs. In: IEEE/CVF International Conference on Computer Vision (ICCV), pp. 14083–14093 (2021)

    Google Scholar 

  24. Tan, Z., et al.: MichiGAN: multi-input-conditioned hair image generation for portrait editing. ACM Trans. Graph. 39(4), 95 (2020)

    Article  Google Scholar 

  25. Yu, C., Wang, J., Peng, C., Gao, C., Yu, G., Sang, N.: BiSeNet: bilateral segmentation network for real-time semantic segmentation. In: European Conference on Computer Vision (ECCV), pp. 325–341 (2018)

    Google Scholar 

  26. Yu, J., Lin, Z., Yang, J., Shen, X., Lu, X., Huang, T.S.: Free-form image inpainting with gated convolution. In: IEEE/CVF International Conference on Computer Vision (ICCV), pp. 4471–4480 (2019)

    Google Scholar 

  27. Zhang, G., Kan, M., Shan, S., Chen, X.: Generative adversarial network with spatial attention for face attribute editing. In: European Conference on Computer Vision (ECCV), pp. 417–432 (2018)

    Google Scholar 

  28. Zhu, P., Abdal, R., Femiani, J., Wonka, P.: Barbershop: GAN-based image compositing using segmentation masks. ACM Trans. Graph. 40(6), 215:1–215:13 (2021)

    Google Scholar 

  29. Zhu, P., Abdal, R., Qin, Y., Wonka, P.: SEAN: image synthesis with semantic region-adaptive normalization. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5104–5113 (2020)

    Google Scholar 

  30. zllrunning: face-parsing.PyTorch. https://github.com/zllrunning/face-parsing.PyTorch

Download references

Acknowledgements

This work is partially supported by the National Key Research and Development Program of China (No. 2017YFA0700800), the Natural Science Foundation of China (No. 62122074), and the Beijing Nova Program (Z191100001119123).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiguang Shan .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 18044 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Guo, X., Kan, M., Chen, T., Shan, S. (2022). GAN with Multivariate Disentangling for Controllable Hair Editing. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13675. Springer, Cham. https://doi.org/10.1007/978-3-031-19784-0_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19784-0_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19783-3

  • Online ISBN: 978-3-031-19784-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics