Skip to main content

Adaptive Feature Interpolation for Low-Shot Image Generation

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13675))

Included in the following conference series:

Abstract

Training of generative models especially Generative Adversarial Networks can easily diverge in low-data setting. To mitigate this issue, we propose a novel implicit data augmentation approach which facilitates stable training and synthesize high-quality samples without need of label information. Specifically, we view the discriminator as a metric embedding of the real data manifold, which offers proper distances between real data points. We then utilize information in the feature space to develop a fully unsupervised and data-driven augmentation method. Experiments on few-shot generation tasks show the proposed method significantly improve results from strong baselines with hundreds of training samples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arandjelović, R., Zisserman, A.: Three things everyone should know to improve object retrieval. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 2911–2918. IEEE (2012)

    Google Scholar 

  2. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein generative adversarial networks. In: Proceedings of the 34th International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 70, pp. 214–223. PMLR (2017)

    Google Scholar 

  3. Balestriero, R., Pesenti, J., LeCun, Y.: Learning in high dimension always amounts to extrapolation (2021)

    Google Scholar 

  4. Bińkowski, M., Sutherland, D.J., Arbel, M., Gretton, A.: Demystifying MMD GANs. In: International Conference on Learning Representations (2018)

    Google Scholar 

  5. Choe, J., Park, S., Kim, K., Hyun Park, J., Kim, D., Shim, H.: Face generation for low-shot learning using generative adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV) Workshops (2017)

    Google Scholar 

  6. Chum, O., Mikulik, A., Perdoch, M., Matas, J.: Total recall II: query expansion revisited. In: CVPR 2011, pp. 889–896. IEEE (2011)

    Google Scholar 

  7. Chum, O., Philbin, J., Sivic, J., Isard, M., Zisserman, A.: Total recall: automatic query expansion with a generative feature model for object retrieval. In: 2007 IEEE 11th International Conference on Computer Vision, pp. 1–8. IEEE (2007)

    Google Scholar 

  8. Dai, M., Hang, H.: Manifold matching via deep metric learning for generative modeling. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 6587–6597 (2021)

    Google Scholar 

  9. Dai, M., Hang, H., Srivastava, A.: Rethinking multidimensional discriminator output for generative adversarial networks (2021)

    Google Scholar 

  10. DeVries, T., Taylor, G.W.: Dataset augmentation in feature space. arXiv preprint arXiv:1702.05538 (2017)

  11. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, vol. 27 (2014)

    Google Scholar 

  12. Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs trained by a two time-scale update rule converge to a local Nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  13. Hong, J., et al.: Reinforced attention for few-shot learning and beyond. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 913–923 (2021)

    Google Scholar 

  14. Hong, Y., Niu, L., Zhang, J., Liang, J., Zhang, L.: DeltaGAN: towards diverse few-shot image generation with sample-specific delta. arXiv preprint arXiv:2009.08753 (2020)

  15. Hong, Y., Niu, L., Zhang, J., Zhao, W., Fu, C., Zhang, L.: F2GAN: fusing-and-filling GAN for few-shot image generation. In: Proceedings of the 28th ACM International Conference on Multimedia, pp. 2535–2543 (2020)

    Google Scholar 

  16. Huang, K., Geng, J., Jiang, W., Deng, X., Xu, Z.: Pseudo-loss confidence metric for semi-supervised few-shot learning. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 8671–8680 (2021)

    Google Scholar 

  17. Karras, T., Aittala, M., Hellsten, J., Laine, S., Lehtinen, J., Aila, T.: Training generative adversarial networks with limited data. In: Proceedings of the NeurIPS (2020)

    Google Scholar 

  18. Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J., Aila, T.: Analyzing and improving the image quality of StyleGAN. In: Proceedings of the CVPR (2020)

    Google Scholar 

  19. Kim, J.H., Choo, W., Song, H.O.: Puzzle mix: exploiting saliency and local statistics for optimal mixup. In: International Conference on Machine Learning (ICML) (2020)

    Google Scholar 

  20. Kim, J., Choo, W., Jeong, H., Song, H.O.: Co-mixup: saliency guided joint mixup with supermodular diversity. In: International Conference on Learning Representations (2021)

    Google Scholar 

  21. Ko, B., Gu, G.: Embedding expansion: augmentation in embedding space for deep metric learning. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2020)

    Google Scholar 

  22. Krizhevsky, A., Nair, V., Hinton, G.: CIFAR-10 (Canadian institute for advanced research)

    Google Scholar 

  23. Li, Y., Zhang, R., Lu, J., Shechtman, E.: Few-shot image generation with elastic weight consolidation. arXiv preprint arXiv:2012.02780 (2020)

  24. Li, Y., et al.: Few-shot object detection via classification refinement and distractor retreatment. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 15395–15403 (2021)

    Google Scholar 

  25. Lim, J.H., Ye, J.C.: Geometric GAN (2017)

    Google Scholar 

  26. Liu, B., Zhu, Y., Song, K., Elgammal, A.: Towards faster and stabilized GAN training for high-fidelity few-shot image synthesis. In: International Conference on Learning Representations (2021)

    Google Scholar 

  27. Liu, S., Wang, Y.: Few-shot learning with online self-distillation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) Workshops, pp. 1067–1070 (2021)

    Google Scholar 

  28. Ojha, U., et al.: Few-shot image generation via cross-domain correspondence. In: CVPR (2021)

    Google Scholar 

  29. Sajjadi, M.S.M., Bachem, O., Lučić, M., Bousquet, O., Gelly, S.: Assessing generative models via precision and recall. In: Advances in Neural Information Processing Systems (NeurIPS) (2018)

    Google Scholar 

  30. Shao, H., Kumar, A., Thomas Fletcher, P.: The Riemannian geometry of deep generative models. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops (2018)

    Google Scholar 

  31. Si, Z., Zhu, S.C.: Learning hybrid image templates (hit) by information projection. IEEE Trans. Pattern Anal. Mach. Intell. 34, 1354–1367 (2012)

    Article  Google Scholar 

  32. Stojanov, S., Thai, A., Rehg, J.M.: Using shape to categorize: low-shot learning with an explicit shape bias. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1798–1808 (2021)

    Google Scholar 

  33. Thulasidasan, S., Chennupati, G., Bilmes, J.A., Bhattacharya, T., Michalak, S.: On mixup training: improved calibration and predictive uncertainty for deep neural networks. In: Advances in Neural Information Processing Systems, vol. 32. Curran Associates, Inc. (2019)

    Google Scholar 

  34. Tian, Y., Wang, Y., Krishnan, D., Tenenbaum, J.B., Isola, P.: Rethinking few-shot image classification: a good embedding is all you need? arXiv abs/2003.11539 (2020)

    Google Scholar 

  35. Tseng, H.Y., Jiang, L., Liu, C., Yang, M.H., Yang, W.: Regularing generative adversarial networks under limited data. In: CVPR (2021)

    Google Scholar 

  36. Turcot, P., Lowe, D.G.: Better matching with fewer features: the selection of useful features in large database recognition problems. In: 2009 IEEE 12th International Conference on Computer Vision Workshops, ICCV Workshops, pp. 2109–2116. IEEE (2009)

    Google Scholar 

  37. Verma, V., et al.: Manifold mixup: better representations by interpolating hidden states. In: International Conference on Machine Learning, pp. 6438–6447. PMLR (2019)

    Google Scholar 

  38. Yao, H., et al.: Automated relational meta-learning. In: International Conference on Learning Representations (2020)

    Google Scholar 

  39. Yun, S., Han, D., Oh, S.J., Chun, S., Choe, J., Yoo, Y.: CutMix: regularization strategy to train strong classifiers with localizable features. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) (2019)

    Google Scholar 

  40. Zhang, C., Song, N., Lin, G., Zheng, Y., Pan, P., Xu, Y.: Few-shot incremental learning with continually evolved classifiers. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 12455–12464 (2021)

    Google Scholar 

  41. Zhang, H., Zhang, Z., Odena, A., Lee, H.: Consistency regularization for generative adversarial networks. In: International Conference on Learning Representations (2020)

    Google Scholar 

  42. Zhang, H., Cisse, M., Dauphin, Y.N., Lopez-Paz, D.: Mixup: beyond empirical risk minimization. In: International Conference on Learning Representations (2018). https://openreview.net/forum?id=r1Ddp1-Rb

  43. Zhao, S., Liu, Z., Lin, J., Zhu, J.Y., Han, S.: Differentiable augmentation for data-efficient GAN training. In: Conference on Neural Information Processing Systems (NeurIPS) (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mengyu Dai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dai, M., Hang, H., Guo, X. (2022). Adaptive Feature Interpolation for Low-Shot Image Generation. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13675. Springer, Cham. https://doi.org/10.1007/978-3-031-19784-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19784-0_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19783-3

  • Online ISBN: 978-3-031-19784-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics