Skip to main content

An Information Theoretic Approach for Attention-Driven Face Forgery Detection

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13674))

Included in the following conference series:

Abstract

Recently, Deepfake arises as a powerful tool to fool the existing real-world face detection systems, which has received wide attention in both academia and society. Most existing forgery face detection methods use heuristic clues to build a binary forgery detector, which mainly takes advantage of the empirical observation based on abnormal texture, blending clues, or high-frequency noise, etc.. However, heuristic clues only reflect certain aspects of the forgery, which might lead to model bias or sub-optimization. Our recent observations indicate that most of the forgery clues are hidden in the informative region, which can be measured quantitatively by the classic information maximization theory. Motivated by this, we make the first attempt to introduce the self-information metric to enhance the feature representation for forgery detection. The proposed metric can be formulated as a plug-and-play block, termed self-information attention (SIA) module, which can be integrated with most of the top-performance deep models to boost their detection performance. The SIA module can explicitly help the model locate the informative regions and recalibrate channel-wise feature responses, which improves both model’s performance and generalization with few additional parameters. Extensive experiments on several large-scale benchmarks demonstrate the superiority of the proposed method against the state-of-the-art competitors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Afchar, D., Nozick, V., Yamagishi, J., Echizen, I.: MesoNet: a compact facial video forgery detection network. In: WIFS, pp. 1–7. IEEE (2018)

    Google Scholar 

  2. Agarwal, S., Farid, H.: Photo forensics from JPEG dimples. In: WIFS, pp. 1–6. IEEE (2017)

    Google Scholar 

  3. Averbuch-Elor, H., Cohen-Or, D., Kopf, J., Cohen, M.F.: Bringing portraits to life. ACM Trans. Graph. (TOG) 36(6), 1–13 (2017)

    Article  Google Scholar 

  4. Brock, A., Donahue, J., Simonyan, K.: Large scale GAN training for high fidelity natural image synthesis. arXiv preprint arXiv:1809.11096 (2018)

  5. Bruce, N., Tsotsos, J.: Saliency based on information maximization. In: Advances in Neural Information Processing Systems, pp. 155–162 (2005)

    Google Scholar 

  6. Bruce, N., Tsotsos, J.: Attention based on information maximization. J. Vis. 7(9), 950–950 (2007)

    Article  Google Scholar 

  7. Cao, J., Ma, C., Yao, T., Chen, S., Ding, S., Yang, X.: End-to-end reconstruction-classification learning for face forgery detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4113–4122 (2022)

    Google Scholar 

  8. Chen, M., Sedighi, V., Boroumand, M., Fridrich, J.: JPEG-phase-aware convolutional neural network for steganalysis of JPEG images. In: Proceedings of the 5th ACM Workshop on Information Hiding and Multimedia Security, pp. 75–84 (2017)

    Google Scholar 

  9. Chen, S., Yao, T., Chen, Y., Ding, S., Li, J., Ji, R.: Local relation learning for face forgery detection. In: AAAI (2021)

    Google Scholar 

  10. Chollet, F.: Xception: deep learning with depthwise separable convolutions. In: CVPR, pp. 1251–1258 (2017)

    Google Scholar 

  11. Cozzolino, D., Poggi, G., Verdoliva, L.: Recasting residual-based local descriptors as convolutional neural networks: an application to image forgery detection. In: Proceedings of the 5th ACM Workshop on Information Hiding and Multimedia Security, pp. 159–164 (2017)

    Google Scholar 

  12. Dolhansky, B., et al.: The deepfake detection challenge dataset. arXiv preprint arXiv:2006.07397 (2020)

  13. Fridrich, J., Kodovsky, J.: Rich models for steganalysis of digital images. IEEE Trans. Inf. Forensics Secur. 7(3), 868–882 (2012)

    Article  Google Scholar 

  14. Gonzalez-Sosa, E., Fierrez, J., Vera-Rodriguez, R., Alonso-Fernandez, F.: Facial soft biometrics for recognition in the wild: recent works, annotation, and cots evaluation. IEEE Trans. Inf. Forensics Secur. 13(8), 2001–2014 (2018)

    Article  Google Scholar 

  15. Goodfellow, I., et al.: Generative adversarial nets. In: NeurlPS, pp. 2672–2680 (2014)

    Google Scholar 

  16. Gu, Q., Chen, S., Yao, T., Chen, Y., Ding, S., Yi, R.: Exploiting fine-grained face forgery clues via progressive enhancement learning. In: AAAI, vol. 36, pp. 735–743 (2022)

    Google Scholar 

  17. Gu, Z., et al.: Spatiotemporal inconsistency learning for deepfake video detection. In: ACM MM, pp. 3473–3481 (2021)

    Google Scholar 

  18. Gunawan, T.S., Hanafiah, S.A.M., Kartiwi, M., Ismail, N., Za’bah, N.F., Nordin, A.N.: Development of photo forensics algorithm by detecting photoshop manipulation using error level analysis. Indones. J. Electr. Eng. Comput. Sci. 7(1), 131–137 (2017)

    Google Scholar 

  19. Guo, Z., Yang, G., Chen, J., Sun, X.: Fake face detection via adaptive manipulation traces extraction network. Comput. Vis. Image Underst. 204, 103170 (2021)

    Article  Google Scholar 

  20. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: CVPR, pp. 7132–7141 (2018)

    Google Scholar 

  21. Huang, D., De La Torre, F.: Facial action transfer with personalized bilinear regression. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7573, pp. 144–158. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33709-3_11

    Chapter  Google Scholar 

  22. Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: CVPR, pp. 4700–4708 (2017)

    Google Scholar 

  23. Huang, Y., et al.: FakePolisher: making deepfakes more detection-evasive by shallow reconstruction. arXiv preprint arXiv:2006.07533 (2020)

  24. Juefei-Xu, F., Wang, R., Huang, Y., Guo, Q., Ma, L., Liu, Y.: Countering malicious deepfakes: survey, battleground, and horizon. arXiv preprint arXiv:2103.00218 (2021)

  25. Kim, H., et al.: Deep video portraits. ACM Trans. Graph. (TOG) 37(4), 1–14 (2018)

    Article  Google Scholar 

  26. Li, J., Xie, H., Li, J., Wang, Z., Zhang, Y.: Frequency-aware discriminative feature learning supervised by single-center loss for face forgery detection. In: CVPR, pp. 6458–6467 (2021)

    Google Scholar 

  27. Li, L., et al.: Face X-ray for more general face forgery detection. In: CVPR, pp. 5001–5010 (2020)

    Google Scholar 

  28. Li, X., et al.: Sharp multiple instance learning for deepfake video detection. In: ACM MM, pp. 1864–1872 (2020)

    Google Scholar 

  29. Li, Y., Lyu, S.: Exposing deepfake videos by detecting face warping artifacts. arXiv preprint arXiv:1811.00656 (2018)

  30. Li, Y., Yang, X., Sun, P., Qi, H., Lyu, S.: Celeb-DF: a new dataset for deepfake forensics. arXiv preprint arXiv:1909.12962 (2019)

  31. Liu, H., et al.: Spatial-phase shallow learning: rethinking face forgery detection in frequency domain. In: CVPR, pp. 772–781 (2021)

    Google Scholar 

  32. Liu, Z., Qi, X., Torr, P.H.: Global texture enhancement for fake face detection in the wild. In: CVPR, pp. 8060–8069 (2020)

    Google Scholar 

  33. Luo, Y., Zhang, Y., Yan, J., Liu, W.: Generalizing face forgery detection with high-frequency features. In: CVPR, pp. 16317–16326 (2021)

    Google Scholar 

  34. Masi, I., Killekar, A., Mascarenhas, R.M., Gurudatt, S.P., AbdAlmageed, W.: Two-branch recurrent network for isolating deepfakes in videos. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12352, pp. 667–684. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58571-6_39

    Chapter  Google Scholar 

  35. Matern, F., Riess, C., Stamminger, M.: Exploiting visual artifacts to expose deepfakes and face manipulations. In: WACVW, pp. 83–92. IEEE (2019)

    Google Scholar 

  36. McCloskey, S., Albright, M.: Detecting GAN-generated imagery using color cues. arXiv preprint arXiv:1812.08247 (2018)

  37. Nguyen, H.H., Fang, F., Yamagishi, J., Echizen, I.: Multi-task learning for detecting and segmenting manipulated facial images and videos. arXiv preprint arXiv:1906.06876 (2019)

  38. Nguyen, H.H., Yamagishi, J., Echizen, I.: Capsule-forensics: using capsule networks to detect forged images and videos. In: ICASSP, pp. 2307–2311. IEEE (2019)

    Google Scholar 

  39. Qian, Y., Yin, G., Sheng, L., Chen, Z., Shao, J.: Thinking in frequency: face forgery detection by mining frequency-aware clues. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12357, pp. 86–103. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58610-2_6

    Chapter  Google Scholar 

  40. Rossler, A., Cozzolino, D., Verdoliva, L., Riess, C., Thies, J., Nießner, M.: FaceForensics++: learning to detect manipulated facial images. In: ICCV, pp. 1–11 (2019)

    Google Scholar 

  41. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-CAM: visual explanations from deep networks via gradient-based localization. In: ICCV, pp. 618–626 (2017)

    Google Scholar 

  42. Shen, Z., Bello, I., Vemulapalli, R., Jia, X., Chen, C.H.: Global self-attention networks for image recognition. arXiv preprint arXiv:2010.03019 (2020)

  43. Shi, B., Zhang, D., Dai, Q., Wang, J., Zhu, Z., Mu, Y.: Informative dropout for robust representation learning: a shape-bias perspective. In: ICML, vol. 1 (2020)

    Google Scholar 

  44. Stehouwer, J., Dang, H., Liu, F., Liu, X., Jain, A.: On the detection of digital face manipulation. In: CVPR (2019)

    Google Scholar 

  45. Sun, K., et al.: Domain general face forgery detection by learning to weight. In: AAAI, vol. 35, pp. 2638–2646 (2021)

    Google Scholar 

  46. Sun, K., Yao, T., Chen, S., Ding, S., Li, J., Ji, R.: Dual contrastive learning for general face forgery detection. In: AAAI, vol. 36, pp. 2316–2324 (2022)

    Google Scholar 

  47. Tan, M., Le, Q.V.: EfficientNet: rethinking model scaling for convolutional neural networks. In: ICML (2019)

    Google Scholar 

  48. Thies, J., Zollhöfer, M., Nießner, M.: Deferred neural rendering: image synthesis using neural textures. ACM Trans. Graph. (TOG) 38(4), 1–12 (2019)

    Article  Google Scholar 

  49. Thies, J., Zollhöfer, M., Nießner, M., Valgaerts, L., Stamminger, M., Theobalt, C.: Real-time expression transfer for facial reenactment. ACM Trans. Graph. 34(6), 183-1 (2015)

    Google Scholar 

  50. Thies, J., Zollhofer, M., Stamminger, M., Theobalt, C., Nießner, M.: Face2Face: real-time face capture and reenactment of RGB videos. In: CVPR, pp. 2387–2395 (2016)

    Google Scholar 

  51. Wang, C., Deng, W.: Representative forgery mining for fake face detection. In: CVPR, pp. 14923–14932 (2021)

    Google Scholar 

  52. Wang, X., Girshick, R., Gupta, A., He, K.: Non-local neural networks. In: CVPR, pp. 7794–7803 (2018)

    Google Scholar 

  53. Wang, X., Yao, T., Ding, S., Ma, L.: Face manipulation detection via auxiliary supervision. In: Yang, H., Pasupa, K., Leung, A.C.-S., Kwok, J.T., Chan, J.H., King, I. (eds.) ICONIP 2020. LNCS, vol. 12532, pp. 313–324. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-63830-6_27

    Chapter  Google Scholar 

  54. Zhao, H., Zhou, W., Chen, D., Wei, T., Zhang, W., Yu, N.: Multi-attentional deepfake detection. In: CVPR (2021)

    Google Scholar 

  55. Zhou, P., Han, X., Morariu, V.I., Davis, L.S.: Two-stream neural networks for tampered face detection. In: CVPRW, pp. 1831–1839. IEEE (2017)

    Google Scholar 

  56. Zi, B., Chang, M., Chen, J., Ma, X., Jiang, Y.G.: WildDeepfake: a challenging real-world dataset for deepfake detection. In: ACM MM, pp. 2382–2390 (2020)

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Fund for Distinguished Young Scholars (No. 62025603), the National Natural Science Foundation of China (No. U21B2037, No. 62176222, No. 62176223, No. 62176226, No. 62072386, No. 62072387, No. 62072389, and No. 62002305), Guangdong Basic and Applied Basic Research Foundation (No. 2019B1515120049, and the Natural Science Foundation of Fujian Province of China (No. 2021J01002).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaoshuai Sun or Shouhong Ding .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 222 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sun, K. et al. (2022). An Information Theoretic Approach for Attention-Driven Face Forgery Detection. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13674. Springer, Cham. https://doi.org/10.1007/978-3-031-19781-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19781-9_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19780-2

  • Online ISBN: 978-3-031-19781-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics