Abstract
Recently, Deepfake arises as a powerful tool to fool the existing real-world face detection systems, which has received wide attention in both academia and society. Most existing forgery face detection methods use heuristic clues to build a binary forgery detector, which mainly takes advantage of the empirical observation based on abnormal texture, blending clues, or high-frequency noise, etc.. However, heuristic clues only reflect certain aspects of the forgery, which might lead to model bias or sub-optimization. Our recent observations indicate that most of the forgery clues are hidden in the informative region, which can be measured quantitatively by the classic information maximization theory. Motivated by this, we make the first attempt to introduce the self-information metric to enhance the feature representation for forgery detection. The proposed metric can be formulated as a plug-and-play block, termed self-information attention (SIA) module, which can be integrated with most of the top-performance deep models to boost their detection performance. The SIA module can explicitly help the model locate the informative regions and recalibrate channel-wise feature responses, which improves both model’s performance and generalization with few additional parameters. Extensive experiments on several large-scale benchmarks demonstrate the superiority of the proposed method against the state-of-the-art competitors.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Afchar, D., Nozick, V., Yamagishi, J., Echizen, I.: MesoNet: a compact facial video forgery detection network. In: WIFS, pp. 1–7. IEEE (2018)
Agarwal, S., Farid, H.: Photo forensics from JPEG dimples. In: WIFS, pp. 1–6. IEEE (2017)
Averbuch-Elor, H., Cohen-Or, D., Kopf, J., Cohen, M.F.: Bringing portraits to life. ACM Trans. Graph. (TOG) 36(6), 1–13 (2017)
Brock, A., Donahue, J., Simonyan, K.: Large scale GAN training for high fidelity natural image synthesis. arXiv preprint arXiv:1809.11096 (2018)
Bruce, N., Tsotsos, J.: Saliency based on information maximization. In: Advances in Neural Information Processing Systems, pp. 155–162 (2005)
Bruce, N., Tsotsos, J.: Attention based on information maximization. J. Vis. 7(9), 950–950 (2007)
Cao, J., Ma, C., Yao, T., Chen, S., Ding, S., Yang, X.: End-to-end reconstruction-classification learning for face forgery detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4113–4122 (2022)
Chen, M., Sedighi, V., Boroumand, M., Fridrich, J.: JPEG-phase-aware convolutional neural network for steganalysis of JPEG images. In: Proceedings of the 5th ACM Workshop on Information Hiding and Multimedia Security, pp. 75–84 (2017)
Chen, S., Yao, T., Chen, Y., Ding, S., Li, J., Ji, R.: Local relation learning for face forgery detection. In: AAAI (2021)
Chollet, F.: Xception: deep learning with depthwise separable convolutions. In: CVPR, pp. 1251–1258 (2017)
Cozzolino, D., Poggi, G., Verdoliva, L.: Recasting residual-based local descriptors as convolutional neural networks: an application to image forgery detection. In: Proceedings of the 5th ACM Workshop on Information Hiding and Multimedia Security, pp. 159–164 (2017)
Dolhansky, B., et al.: The deepfake detection challenge dataset. arXiv preprint arXiv:2006.07397 (2020)
Fridrich, J., Kodovsky, J.: Rich models for steganalysis of digital images. IEEE Trans. Inf. Forensics Secur. 7(3), 868–882 (2012)
Gonzalez-Sosa, E., Fierrez, J., Vera-Rodriguez, R., Alonso-Fernandez, F.: Facial soft biometrics for recognition in the wild: recent works, annotation, and cots evaluation. IEEE Trans. Inf. Forensics Secur. 13(8), 2001–2014 (2018)
Goodfellow, I., et al.: Generative adversarial nets. In: NeurlPS, pp. 2672–2680 (2014)
Gu, Q., Chen, S., Yao, T., Chen, Y., Ding, S., Yi, R.: Exploiting fine-grained face forgery clues via progressive enhancement learning. In: AAAI, vol. 36, pp. 735–743 (2022)
Gu, Z., et al.: Spatiotemporal inconsistency learning for deepfake video detection. In: ACM MM, pp. 3473–3481 (2021)
Gunawan, T.S., Hanafiah, S.A.M., Kartiwi, M., Ismail, N., Za’bah, N.F., Nordin, A.N.: Development of photo forensics algorithm by detecting photoshop manipulation using error level analysis. Indones. J. Electr. Eng. Comput. Sci. 7(1), 131–137 (2017)
Guo, Z., Yang, G., Chen, J., Sun, X.: Fake face detection via adaptive manipulation traces extraction network. Comput. Vis. Image Underst. 204, 103170 (2021)
Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: CVPR, pp. 7132–7141 (2018)
Huang, D., De La Torre, F.: Facial action transfer with personalized bilinear regression. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7573, pp. 144–158. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33709-3_11
Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: CVPR, pp. 4700–4708 (2017)
Huang, Y., et al.: FakePolisher: making deepfakes more detection-evasive by shallow reconstruction. arXiv preprint arXiv:2006.07533 (2020)
Juefei-Xu, F., Wang, R., Huang, Y., Guo, Q., Ma, L., Liu, Y.: Countering malicious deepfakes: survey, battleground, and horizon. arXiv preprint arXiv:2103.00218 (2021)
Kim, H., et al.: Deep video portraits. ACM Trans. Graph. (TOG) 37(4), 1–14 (2018)
Li, J., Xie, H., Li, J., Wang, Z., Zhang, Y.: Frequency-aware discriminative feature learning supervised by single-center loss for face forgery detection. In: CVPR, pp. 6458–6467 (2021)
Li, L., et al.: Face X-ray for more general face forgery detection. In: CVPR, pp. 5001–5010 (2020)
Li, X., et al.: Sharp multiple instance learning for deepfake video detection. In: ACM MM, pp. 1864–1872 (2020)
Li, Y., Lyu, S.: Exposing deepfake videos by detecting face warping artifacts. arXiv preprint arXiv:1811.00656 (2018)
Li, Y., Yang, X., Sun, P., Qi, H., Lyu, S.: Celeb-DF: a new dataset for deepfake forensics. arXiv preprint arXiv:1909.12962 (2019)
Liu, H., et al.: Spatial-phase shallow learning: rethinking face forgery detection in frequency domain. In: CVPR, pp. 772–781 (2021)
Liu, Z., Qi, X., Torr, P.H.: Global texture enhancement for fake face detection in the wild. In: CVPR, pp. 8060–8069 (2020)
Luo, Y., Zhang, Y., Yan, J., Liu, W.: Generalizing face forgery detection with high-frequency features. In: CVPR, pp. 16317–16326 (2021)
Masi, I., Killekar, A., Mascarenhas, R.M., Gurudatt, S.P., AbdAlmageed, W.: Two-branch recurrent network for isolating deepfakes in videos. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12352, pp. 667–684. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58571-6_39
Matern, F., Riess, C., Stamminger, M.: Exploiting visual artifacts to expose deepfakes and face manipulations. In: WACVW, pp. 83–92. IEEE (2019)
McCloskey, S., Albright, M.: Detecting GAN-generated imagery using color cues. arXiv preprint arXiv:1812.08247 (2018)
Nguyen, H.H., Fang, F., Yamagishi, J., Echizen, I.: Multi-task learning for detecting and segmenting manipulated facial images and videos. arXiv preprint arXiv:1906.06876 (2019)
Nguyen, H.H., Yamagishi, J., Echizen, I.: Capsule-forensics: using capsule networks to detect forged images and videos. In: ICASSP, pp. 2307–2311. IEEE (2019)
Qian, Y., Yin, G., Sheng, L., Chen, Z., Shao, J.: Thinking in frequency: face forgery detection by mining frequency-aware clues. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12357, pp. 86–103. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58610-2_6
Rossler, A., Cozzolino, D., Verdoliva, L., Riess, C., Thies, J., Nießner, M.: FaceForensics++: learning to detect manipulated facial images. In: ICCV, pp. 1–11 (2019)
Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-CAM: visual explanations from deep networks via gradient-based localization. In: ICCV, pp. 618–626 (2017)
Shen, Z., Bello, I., Vemulapalli, R., Jia, X., Chen, C.H.: Global self-attention networks for image recognition. arXiv preprint arXiv:2010.03019 (2020)
Shi, B., Zhang, D., Dai, Q., Wang, J., Zhu, Z., Mu, Y.: Informative dropout for robust representation learning: a shape-bias perspective. In: ICML, vol. 1 (2020)
Stehouwer, J., Dang, H., Liu, F., Liu, X., Jain, A.: On the detection of digital face manipulation. In: CVPR (2019)
Sun, K., et al.: Domain general face forgery detection by learning to weight. In: AAAI, vol. 35, pp. 2638–2646 (2021)
Sun, K., Yao, T., Chen, S., Ding, S., Li, J., Ji, R.: Dual contrastive learning for general face forgery detection. In: AAAI, vol. 36, pp. 2316–2324 (2022)
Tan, M., Le, Q.V.: EfficientNet: rethinking model scaling for convolutional neural networks. In: ICML (2019)
Thies, J., Zollhöfer, M., Nießner, M.: Deferred neural rendering: image synthesis using neural textures. ACM Trans. Graph. (TOG) 38(4), 1–12 (2019)
Thies, J., Zollhöfer, M., Nießner, M., Valgaerts, L., Stamminger, M., Theobalt, C.: Real-time expression transfer for facial reenactment. ACM Trans. Graph. 34(6), 183-1 (2015)
Thies, J., Zollhofer, M., Stamminger, M., Theobalt, C., Nießner, M.: Face2Face: real-time face capture and reenactment of RGB videos. In: CVPR, pp. 2387–2395 (2016)
Wang, C., Deng, W.: Representative forgery mining for fake face detection. In: CVPR, pp. 14923–14932 (2021)
Wang, X., Girshick, R., Gupta, A., He, K.: Non-local neural networks. In: CVPR, pp. 7794–7803 (2018)
Wang, X., Yao, T., Ding, S., Ma, L.: Face manipulation detection via auxiliary supervision. In: Yang, H., Pasupa, K., Leung, A.C.-S., Kwok, J.T., Chan, J.H., King, I. (eds.) ICONIP 2020. LNCS, vol. 12532, pp. 313–324. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-63830-6_27
Zhao, H., Zhou, W., Chen, D., Wei, T., Zhang, W., Yu, N.: Multi-attentional deepfake detection. In: CVPR (2021)
Zhou, P., Han, X., Morariu, V.I., Davis, L.S.: Two-stream neural networks for tampered face detection. In: CVPRW, pp. 1831–1839. IEEE (2017)
Zi, B., Chang, M., Chen, J., Ma, X., Jiang, Y.G.: WildDeepfake: a challenging real-world dataset for deepfake detection. In: ACM MM, pp. 2382–2390 (2020)
Acknowledgments
This work was supported by the National Science Fund for Distinguished Young Scholars (No. 62025603), the National Natural Science Foundation of China (No. U21B2037, No. 62176222, No. 62176223, No. 62176226, No. 62072386, No. 62072387, No. 62072389, and No. 62002305), Guangdong Basic and Applied Basic Research Foundation (No. 2019B1515120049, and the Natural Science Foundation of Fujian Province of China (No. 2021J01002).
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Sun, K. et al. (2022). An Information Theoretic Approach for Attention-Driven Face Forgery Detection. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13674. Springer, Cham. https://doi.org/10.1007/978-3-031-19781-9_7
Download citation
DOI: https://doi.org/10.1007/978-3-031-19781-9_7
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-19780-2
Online ISBN: 978-3-031-19781-9
eBook Packages: Computer ScienceComputer Science (R0)