Abstract
While recent advances in generative models benefit the society, the generated images can be abused for malicious purposes, like fraud, defamation, and false news. To prevent such cases, vigorous research is conducted on distinguishing the generated images from the real ones, but challenges still remain with detecting the unseen generated images outside of the training settings. To overcome this problem, we analyze the distinctive characteristic of the generated images called ‘fingerprints,’ and propose a new framework to reproduce diverse types of fingerprints generated by various generative models. By training the model with the real images only, our framework can avoid data dependency on particular generative models and enhance generalization. With the mathematical derivation that the fingerprint is emphasized at the frequency domain, we design a generated image detector for effective training of the fingerprints. Our framework outperforms the prior state-of-the-art detectors, even though only real images are used for training. We also provide new benchmark datasets to demonstrate the model’s robustness using the images of the latest anti-artifact generative models for reducing the spectral discrepancies.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ahmed, N., Natarajan, T., Rao, K.R.: Discrete cosine transform. IEEE Trans. Comput. 100(1), 90–93 (1974)
Aneja, S., Nießner, M.: Generalized zero and few-shot transfer for facial forgery detection. arXiv preprint arXiv:2006.11863 (2020)
Bappy, J.H., Simons, C., Nataraj, L., Manjunath, B., Roy-Chowdhury, A.K.: Hybrid LSTM and encoder-decoder architecture for detection of image forgeries. IEEE Trans. Image Process. 28(7), 3286–3300 (2019)
Brock, A., Donahue, J., Simonyan, K.: Large scale GAN training for high fidelity natural image synthesis. In: International Conference on Learning Representations (2019). https://openreview.net/forum?id=B1xsqj09Fm
Chandrasegaran, K., Tran, N.T., Cheung, N.M.: A closer look at Fourier spectrum discrepancies for CNN-generated images detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2021)
Chen, S., Yao, T., Chen, Y., Ding, S., Li, J., Ji, R.: Local relation learning for face forgery detection. arXiv preprint arXiv:2105.02577 (2021)
Chen, Y., Li, G., Jin, C., Liu, S., Li, T.: SSD-GAN: measuring the realness in the spatial and spectral domains. In: Proceedings of the AAAI Conference on Artificial Intelligence (2021)
Choi, J., Kim, S., Jeong, Y., Gwon, Y., Yoon, S.: ILVR: conditioning method for denoising diffusion probabilistic models. In: IEEE International Conference on Computer Vision (2021)
Choi, Y., Choi, M., Kim, M., Ha, J.W., Kim, S., Choo, J.: StarGAN: unified generative adversarial networks for multi-domain image-to-image translation. In: IEEE Conference on Computer Vision and Pattern Recognition (2018)
Choi, Y., Uh, Y., Yoo, J., Ha, J.W.: StarGAN v2: diverse image synthesis for multiple domains. In: IEEE Conference on Computer Vision and Pattern Recognition (2020)
Cooley, J.W., Lewis, P.A., Welch, P.D.: The fast Fourier transform and its applications. IEEE Trans. Educ. 12(1), 27–34 (1969)
Cozzolino, D., Thies, J., Rössler, A., Riess, C., Nießner, M., Verdoliva, L.: ForensicTransfer: weakly-supervised domain adaptation for forgery detection. arXiv (2018)
Dirik, A.E., Memon, N.: Image tamper detection based on demosaicing artifacts. In: 2009 16th IEEE International Conference on Image Processing, pp. 1497–1500 (2009)
Durall, R., Keuper, M., Keuper, J.: Watch your up-convolution: CNN based generative deep neural networks are failing to reproduce spectral distributions. In: IEEE Conference on Computer Vision and Pattern Recognition, Seattle, WA, United States (2020)
Durall, R., Keuper, M., Pfreundt, F.J., Keuper, J.: Unmasking deepfakes with simple features. arXiv preprint arXiv:1911.00686 (2019)
Everingham, M., Gool, L.V., Williams, C.K.I., Winn, J., Zisserman, A.: The pascal visual object classes (VOC) challenge. Int. J. Comput. Vis. 88, 303–338 (2010). https://doi.org/10.1007/s11263-009-0275-4
Ferrara, P., Bianchi, T., De Rosa, A., Piva, A.: Image forgery localization via fine-grained analysis of CFA artifacts. IEEE Trans. Inf. Forensics Secur. 7(5), 1566–1577 (2012)
Frank, J., Eisenhofer, T., Schönherr, L., Fischer, A., Kolossa, D., Holz, T.: Leveraging frequency analysis for deep fake image recognition. In: International Conference on Machine Learning, pp. 3247–3258. PMLR (2020)
Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672–2680 (2014)
Gragnaniello, D., Cozzolino, D., Marra, F., Poggi, G., Verdoliva, L.: Are GAN generated images easy to detect? A critical analysis of the state-of-the-art. arXiv preprint arXiv:2104.02617 (2021)
Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs trained by a two time-scale update rule converge to a local Nash equilibrium. In: Advances in Neural Information Processing Systems (2017)
Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. In: Neural Information Processing Systems (NeurIPS) (2020)
Huang, D.Y., Huang, C.N., Hu, W.C., Chou, C.H.: Robustness of copy-move forgery detection under high JPEG compression artifacts. Multimed. Tools Appl. 76(1), 1509–1530 (2017). https://doi.org/10.1007/s11042-015-3152-x
Jeon, H., Bang, Y.O., Kim, J., Woo, S.: T-GD: transferable GAN-generated images detection framework. In: International Conference on Machine Learning, pp. 4746–4761. PMLR (2020)
Jeong, Y., et al.: FICGAN: facial identity controllable GAN for de-identification. arXiv preprint arXiv:2110.00740 (2021)
Jeong, Y., Kim, D., Kim, P., Ro, Y., Choi, J.: Self-supervised GAN detector. arXiv preprint arXiv:2111.06575 (2021)
Jeong, Y., Kim, D., Min, S., Joe, S., Gwon, Y., Choi, J.: BiHPF: bilateral high-pass filters for robust deepfake detection. arXiv preprint arXiv:2109.00911 (2021)
Jeong, Y., Kim, D., Ro, Y., Choi, J.: FrePGAN: robust deepfake detection using frequency-level perturbations. arXiv preprint arXiv:2202.03347 (2022)
Jung, S., Keuper, M.: Spectral distribution aware image generation. In: Proceedings of the AAAI Conference on Artificial Intelligence (2021)
Karras, T., Aila, T., Laine, S., Lehtinen, J.: Progressive growing of GANs for improved quality, stability, and variation. In: International Conference on Learning Representations (2018). https://openreview.net/forum?id=Hk99zCeAb
Karras, T., et al.: Alias-free generative adversarial networks. In: Proceedings of the Neural Information Processing Systems (NeurIPS) (2021)
Karras, T., Laine, S., Aila, T.: A style-based generator architecture for generative adversarial networks. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 4401–4410 (2019)
Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J., Aila, T.: Analyzing and improving the image quality of StyleGAN. CoRR abs/1912.04958 (2019)
Kim, M., Tariq, S., Woo, S.S.: FReTAL: generalizing deepfake detection using knowledge distillation and representation learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1001–1012 (2021)
Kirchner, M.: Fast and reliable resampling detection by spectral analysis of fixed linear predictor residue. In: ACM Workshop on Multimedia and Security, pp. 11–20 (2008)
Kwon, P., You, J., Nam, G., Park, S., Chae, G.: KoDF: a large-scale Korean deepfake detection dataset. arXiv preprint arXiv:2103.10094 (2021)
Lee, C.H., Liu, Z., Wu, L., Luo, P.: MaskGAN: towards diverse and interactive facial image manipulation. In: IEEE Conference on Computer Vision and Pattern Recognition (2020)
Lee, S., Tariq, S., Shin, Y., Woo, S.S.: Detecting handcrafted facial image manipulations and GAN-generated facial images using Shallow-FakeFaceNet. Appl. Soft Comput. 105, 107256 (2021)
Li, Y., Lyu, S.: Exposing deepfake videos by detecting face warping artifacts. In: IEEE Conference on Computer Vision and Pattern Recognition Workshops (2019)
Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48
Liu, H., et al.: Spatial-phase shallow learning: rethinking face forgery detection in frequency domain. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 772–781 (2021)
Liu, Z., Luo, P., Wang, X., Tang, X.: Deep learning face attributes in the wild. In: International Conference on Computer Vision, December 2015
Marra, F., Gragnaniello, D., Verdoliva, L., Poggi, G.: Do GANs leave artificial fingerprints? In: IEEE Conference on Multimedia Information Processing and Retrieval, pp. 506–511. IEEE (2019)
Nguyen, T.T., Nguyen, C.M., Nguyen, D.T., Nguyen, D.T., Nahavandi, S.: Deep learning for deepfakes creation and detection. arXiv preprint arXiv:1909.11573 (2019)
Park, T., Liu, M.Y., Wang, T.C., Zhu, J.Y.: Semantic image synthesis with spatially-adaptive normalization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2337–2346 (2019)
Pidhorskyi, S., Adjeroh, D.A., Doretto, G.: Adversarial latent autoencoders. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14104–14113 (2020)
Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211–252 (2015). https://doi.org/10.1007/s11263-015-0816-y
Sun, K., et al.: Domain general face forgery detection by learning to weight (2021)
Sun, Z., Han, Y., Hua, Z., Ruan, N., Jia, W.: Improving the efficiency and robustness of deepfakes detection through precise geometric features. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3609–3618 (2021)
Tralic, D., Petrovic, J., Grgic, S.: JPEG image tampering detection using blocking artifacts. In: International Conference on Systems, Signals and Image Processing, pp. 5–8. IEEE (2012)
Vahdat, A., Kautz, J.: NVAE: a deep hierarchical variational autoencoder. In: Neural Information Processing Systems (NeurIPS) (2020)
Wang, S.Y., Wang, O., Zhang, R., Owens, A., Efros, A.A.: CNN-generated images are surprisingly easy to spot...for now. In: IEEE Conference on Computer Vision and Pattern Recognition (2020)
Ye, S., Sun, Q., Chang, E.C.: Detecting digital image forgeries by measuring inconsistencies of blocking artifact. In: IEEE International Conference on Multimedia and Expo, pp. 12–15. IEEE (2007)
Yu, F., Zhang, Y., Song, S., Seff, A., Xiao, J.: LSUN: construction of a large-scale image dataset using deep learning with humans in the loop. arXiv preprint arXiv:1506.03365 (2015)
Zhang, H., Cisse, M., Dauphin, Y.N., Lopez-Paz, D.: mixup: beyond empirical risk minimization (2018)
Zhang, X., Karaman, S., Chang, S.F.: Detecting and simulating artifacts in GAN fake images. In: 2019 IEEE International Workshop on Information Forensics and Security (WIFS), pp. 1–6. IEEE (2019)
Zhao, H., Zhou, W., Chen, D., Wei, T., Zhang, W., Yu, N.: Multi-attentional deepfake detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2185–2194 (2021)
Zhu, J., Shen, Y., Zhao, D., Zhou, B.: In-domain GAN inversion for real image editing. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12362, pp. 592–608. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58520-4_35
Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: IEEE International Conference on Computer Vision (2017)
Acknowledgments
It was supported by Samsung SDS and Institute of Information & communications Technology Planning & Evaluation (IITP) grant funded by the Korea government (MSIT) (2021-0-01341, Artificial Intelligence Graduate School Program(Chung-Ang University); 2021-0-01778, Development of Human Image Synthesis and Discrimination Technology Below the Perceptual Threshold; 2021-0-02067, Next Generation AI for Multi-purpose Video Search).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Jeong, Y., Kim, D., Ro, Y., Kim, P., Choi, J. (2022). FingerprintNet: Synthesized Fingerprints for Generated Image Detection. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13674. Springer, Cham. https://doi.org/10.1007/978-3-031-19781-9_5
Download citation
DOI: https://doi.org/10.1007/978-3-031-19781-9_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-19780-2
Online ISBN: 978-3-031-19781-9
eBook Packages: Computer ScienceComputer Science (R0)