Skip to main content

FingerprintNet: Synthesized Fingerprints for Generated Image Detection

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13674))

Included in the following conference series:

Abstract

While recent advances in generative models benefit the society, the generated images can be abused for malicious purposes, like fraud, defamation, and false news. To prevent such cases, vigorous research is conducted on distinguishing the generated images from the real ones, but challenges still remain with detecting the unseen generated images outside of the training settings. To overcome this problem, we analyze the distinctive characteristic of the generated images called ‘fingerprints,’ and propose a new framework to reproduce diverse types of fingerprints generated by various generative models. By training the model with the real images only, our framework can avoid data dependency on particular generative models and enhance generalization. With the mathematical derivation that the fingerprint is emphasized at the frequency domain, we design a generated image detector for effective training of the fingerprints. Our framework outperforms the prior state-of-the-art detectors, even though only real images are used for training. We also provide new benchmark datasets to demonstrate the model’s robustness using the images of the latest anti-artifact generative models for reducing the spectral discrepancies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ahmed, N., Natarajan, T., Rao, K.R.: Discrete cosine transform. IEEE Trans. Comput. 100(1), 90–93 (1974)

    Article  MathSciNet  Google Scholar 

  2. Aneja, S., Nießner, M.: Generalized zero and few-shot transfer for facial forgery detection. arXiv preprint arXiv:2006.11863 (2020)

  3. Bappy, J.H., Simons, C., Nataraj, L., Manjunath, B., Roy-Chowdhury, A.K.: Hybrid LSTM and encoder-decoder architecture for detection of image forgeries. IEEE Trans. Image Process. 28(7), 3286–3300 (2019)

    Article  MathSciNet  Google Scholar 

  4. Brock, A., Donahue, J., Simonyan, K.: Large scale GAN training for high fidelity natural image synthesis. In: International Conference on Learning Representations (2019). https://openreview.net/forum?id=B1xsqj09Fm

  5. Chandrasegaran, K., Tran, N.T., Cheung, N.M.: A closer look at Fourier spectrum discrepancies for CNN-generated images detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2021)

    Google Scholar 

  6. Chen, S., Yao, T., Chen, Y., Ding, S., Li, J., Ji, R.: Local relation learning for face forgery detection. arXiv preprint arXiv:2105.02577 (2021)

  7. Chen, Y., Li, G., Jin, C., Liu, S., Li, T.: SSD-GAN: measuring the realness in the spatial and spectral domains. In: Proceedings of the AAAI Conference on Artificial Intelligence (2021)

    Google Scholar 

  8. Choi, J., Kim, S., Jeong, Y., Gwon, Y., Yoon, S.: ILVR: conditioning method for denoising diffusion probabilistic models. In: IEEE International Conference on Computer Vision (2021)

    Google Scholar 

  9. Choi, Y., Choi, M., Kim, M., Ha, J.W., Kim, S., Choo, J.: StarGAN: unified generative adversarial networks for multi-domain image-to-image translation. In: IEEE Conference on Computer Vision and Pattern Recognition (2018)

    Google Scholar 

  10. Choi, Y., Uh, Y., Yoo, J., Ha, J.W.: StarGAN v2: diverse image synthesis for multiple domains. In: IEEE Conference on Computer Vision and Pattern Recognition (2020)

    Google Scholar 

  11. Cooley, J.W., Lewis, P.A., Welch, P.D.: The fast Fourier transform and its applications. IEEE Trans. Educ. 12(1), 27–34 (1969)

    Article  Google Scholar 

  12. Cozzolino, D., Thies, J., Rössler, A., Riess, C., Nießner, M., Verdoliva, L.: ForensicTransfer: weakly-supervised domain adaptation for forgery detection. arXiv (2018)

    Google Scholar 

  13. Dirik, A.E., Memon, N.: Image tamper detection based on demosaicing artifacts. In: 2009 16th IEEE International Conference on Image Processing, pp. 1497–1500 (2009)

    Google Scholar 

  14. Durall, R., Keuper, M., Keuper, J.: Watch your up-convolution: CNN based generative deep neural networks are failing to reproduce spectral distributions. In: IEEE Conference on Computer Vision and Pattern Recognition, Seattle, WA, United States (2020)

    Google Scholar 

  15. Durall, R., Keuper, M., Pfreundt, F.J., Keuper, J.: Unmasking deepfakes with simple features. arXiv preprint arXiv:1911.00686 (2019)

  16. Everingham, M., Gool, L.V., Williams, C.K.I., Winn, J., Zisserman, A.: The pascal visual object classes (VOC) challenge. Int. J. Comput. Vis. 88, 303–338 (2010). https://doi.org/10.1007/s11263-009-0275-4

    Article  Google Scholar 

  17. Ferrara, P., Bianchi, T., De Rosa, A., Piva, A.: Image forgery localization via fine-grained analysis of CFA artifacts. IEEE Trans. Inf. Forensics Secur. 7(5), 1566–1577 (2012)

    Article  Google Scholar 

  18. Frank, J., Eisenhofer, T., Schönherr, L., Fischer, A., Kolossa, D., Holz, T.: Leveraging frequency analysis for deep fake image recognition. In: International Conference on Machine Learning, pp. 3247–3258. PMLR (2020)

    Google Scholar 

  19. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672–2680 (2014)

    Google Scholar 

  20. Gragnaniello, D., Cozzolino, D., Marra, F., Poggi, G., Verdoliva, L.: Are GAN generated images easy to detect? A critical analysis of the state-of-the-art. arXiv preprint arXiv:2104.02617 (2021)

  21. Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs trained by a two time-scale update rule converge to a local Nash equilibrium. In: Advances in Neural Information Processing Systems (2017)

    Google Scholar 

  22. Ho, J., Jain, A., Abbeel, P.: Denoising diffusion probabilistic models. In: Neural Information Processing Systems (NeurIPS) (2020)

    Google Scholar 

  23. Huang, D.Y., Huang, C.N., Hu, W.C., Chou, C.H.: Robustness of copy-move forgery detection under high JPEG compression artifacts. Multimed. Tools Appl. 76(1), 1509–1530 (2017). https://doi.org/10.1007/s11042-015-3152-x

    Article  Google Scholar 

  24. Jeon, H., Bang, Y.O., Kim, J., Woo, S.: T-GD: transferable GAN-generated images detection framework. In: International Conference on Machine Learning, pp. 4746–4761. PMLR (2020)

    Google Scholar 

  25. Jeong, Y., et al.: FICGAN: facial identity controllable GAN for de-identification. arXiv preprint arXiv:2110.00740 (2021)

  26. Jeong, Y., Kim, D., Kim, P., Ro, Y., Choi, J.: Self-supervised GAN detector. arXiv preprint arXiv:2111.06575 (2021)

  27. Jeong, Y., Kim, D., Min, S., Joe, S., Gwon, Y., Choi, J.: BiHPF: bilateral high-pass filters for robust deepfake detection. arXiv preprint arXiv:2109.00911 (2021)

  28. Jeong, Y., Kim, D., Ro, Y., Choi, J.: FrePGAN: robust deepfake detection using frequency-level perturbations. arXiv preprint arXiv:2202.03347 (2022)

  29. Jung, S., Keuper, M.: Spectral distribution aware image generation. In: Proceedings of the AAAI Conference on Artificial Intelligence (2021)

    Google Scholar 

  30. Karras, T., Aila, T., Laine, S., Lehtinen, J.: Progressive growing of GANs for improved quality, stability, and variation. In: International Conference on Learning Representations (2018). https://openreview.net/forum?id=Hk99zCeAb

  31. Karras, T., et al.: Alias-free generative adversarial networks. In: Proceedings of the Neural Information Processing Systems (NeurIPS) (2021)

    Google Scholar 

  32. Karras, T., Laine, S., Aila, T.: A style-based generator architecture for generative adversarial networks. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 4401–4410 (2019)

    Google Scholar 

  33. Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J., Aila, T.: Analyzing and improving the image quality of StyleGAN. CoRR abs/1912.04958 (2019)

    Google Scholar 

  34. Kim, M., Tariq, S., Woo, S.S.: FReTAL: generalizing deepfake detection using knowledge distillation and representation learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1001–1012 (2021)

    Google Scholar 

  35. Kirchner, M.: Fast and reliable resampling detection by spectral analysis of fixed linear predictor residue. In: ACM Workshop on Multimedia and Security, pp. 11–20 (2008)

    Google Scholar 

  36. Kwon, P., You, J., Nam, G., Park, S., Chae, G.: KoDF: a large-scale Korean deepfake detection dataset. arXiv preprint arXiv:2103.10094 (2021)

  37. Lee, C.H., Liu, Z., Wu, L., Luo, P.: MaskGAN: towards diverse and interactive facial image manipulation. In: IEEE Conference on Computer Vision and Pattern Recognition (2020)

    Google Scholar 

  38. Lee, S., Tariq, S., Shin, Y., Woo, S.S.: Detecting handcrafted facial image manipulations and GAN-generated facial images using Shallow-FakeFaceNet. Appl. Soft Comput. 105, 107256 (2021)

    Article  Google Scholar 

  39. Li, Y., Lyu, S.: Exposing deepfake videos by detecting face warping artifacts. In: IEEE Conference on Computer Vision and Pattern Recognition Workshops (2019)

    Google Scholar 

  40. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  41. Liu, H., et al.: Spatial-phase shallow learning: rethinking face forgery detection in frequency domain. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 772–781 (2021)

    Google Scholar 

  42. Liu, Z., Luo, P., Wang, X., Tang, X.: Deep learning face attributes in the wild. In: International Conference on Computer Vision, December 2015

    Google Scholar 

  43. Marra, F., Gragnaniello, D., Verdoliva, L., Poggi, G.: Do GANs leave artificial fingerprints? In: IEEE Conference on Multimedia Information Processing and Retrieval, pp. 506–511. IEEE (2019)

    Google Scholar 

  44. Nguyen, T.T., Nguyen, C.M., Nguyen, D.T., Nguyen, D.T., Nahavandi, S.: Deep learning for deepfakes creation and detection. arXiv preprint arXiv:1909.11573 (2019)

  45. Park, T., Liu, M.Y., Wang, T.C., Zhu, J.Y.: Semantic image synthesis with spatially-adaptive normalization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2337–2346 (2019)

    Google Scholar 

  46. Pidhorskyi, S., Adjeroh, D.A., Doretto, G.: Adversarial latent autoencoders. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14104–14113 (2020)

    Google Scholar 

  47. Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211–252 (2015). https://doi.org/10.1007/s11263-015-0816-y

    Article  MathSciNet  Google Scholar 

  48. Sun, K., et al.: Domain general face forgery detection by learning to weight (2021)

    Google Scholar 

  49. Sun, Z., Han, Y., Hua, Z., Ruan, N., Jia, W.: Improving the efficiency and robustness of deepfakes detection through precise geometric features. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3609–3618 (2021)

    Google Scholar 

  50. Tralic, D., Petrovic, J., Grgic, S.: JPEG image tampering detection using blocking artifacts. In: International Conference on Systems, Signals and Image Processing, pp. 5–8. IEEE (2012)

    Google Scholar 

  51. Vahdat, A., Kautz, J.: NVAE: a deep hierarchical variational autoencoder. In: Neural Information Processing Systems (NeurIPS) (2020)

    Google Scholar 

  52. Wang, S.Y., Wang, O., Zhang, R., Owens, A., Efros, A.A.: CNN-generated images are surprisingly easy to spot...for now. In: IEEE Conference on Computer Vision and Pattern Recognition (2020)

    Google Scholar 

  53. Ye, S., Sun, Q., Chang, E.C.: Detecting digital image forgeries by measuring inconsistencies of blocking artifact. In: IEEE International Conference on Multimedia and Expo, pp. 12–15. IEEE (2007)

    Google Scholar 

  54. Yu, F., Zhang, Y., Song, S., Seff, A., Xiao, J.: LSUN: construction of a large-scale image dataset using deep learning with humans in the loop. arXiv preprint arXiv:1506.03365 (2015)

  55. Zhang, H., Cisse, M., Dauphin, Y.N., Lopez-Paz, D.: mixup: beyond empirical risk minimization (2018)

    Google Scholar 

  56. Zhang, X., Karaman, S., Chang, S.F.: Detecting and simulating artifacts in GAN fake images. In: 2019 IEEE International Workshop on Information Forensics and Security (WIFS), pp. 1–6. IEEE (2019)

    Google Scholar 

  57. Zhao, H., Zhou, W., Chen, D., Wei, T., Zhang, W., Yu, N.: Multi-attentional deepfake detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2185–2194 (2021)

    Google Scholar 

  58. Zhu, J., Shen, Y., Zhao, D., Zhou, B.: In-domain GAN inversion for real image editing. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12362, pp. 592–608. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58520-4_35

    Chapter  Google Scholar 

  59. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: IEEE International Conference on Computer Vision (2017)

    Google Scholar 

Download references

Acknowledgments

It was supported by Samsung SDS and Institute of Information & communications Technology Planning & Evaluation (IITP) grant funded by the Korea government (MSIT) (2021-0-01341, Artificial Intelligence Graduate School Program(Chung-Ang University); 2021-0-01778, Development of Human Image Synthesis and Discrimination Technology Below the Perceptual Threshold; 2021-0-02067, Next Generation AI for Multi-purpose Video Search).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jongwon Choi .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 1135 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jeong, Y., Kim, D., Ro, Y., Kim, P., Choi, J. (2022). FingerprintNet: Synthesized Fingerprints for Generated Image Detection. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13674. Springer, Cham. https://doi.org/10.1007/978-3-031-19781-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19781-9_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19780-2

  • Online ISBN: 978-3-031-19781-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics