Skip to main content

PixelFolder: An Efficient Progressive Pixel Synthesis Network for Image Generation

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13674))

Included in the following conference series:

  • 2552 Accesses

Abstract

Pixel synthesis is a promising research paradigm for image generation, which can well exploit pixel-wise prior knowledge for generation. However, existing methods still suffer from excessive memory footprint and computation overhead. In this paper, we propose a progressive pixel synthesis network towards efficient image generation, coined as PixelFolder. Specifically, PixelFolder formulates image generation as a progressive pixel regression problem and synthesizes images by a multi-stage paradigm, which can greatly reduce the overhead caused by large tensor transformations. In addition, we introduce novel pixel folding operations to further improve model efficiency while maintaining pixel-wise prior knowledge for end-to-end regression. With these innovative designs, we greatly reduce the expenditure of pixel synthesis, e.g., reducing \(89\%\) computation and \(53\%\) parameters compared to the latest pixel synthesis method called CIPS. To validate our approach, we conduct extensive experiments on two benchmark datasets, namely FFHQ and LSUN Church. The experimental results show that with much less expenditure, PixelFolder obtains new state-of-the-art (SOTA) performance on two benchmark datasets, i.e., 3.77 FID and 2.45 FID on FFHQ and LSUN Church, respectively. Meanwhile, PixelFolder is also more efficient than the SOTA methods like StyleGAN2, reducing about \(72\%\) computation and \(31\%\) parameters, respectively. These results greatly validate the effectiveness of the proposed PixelFolder. Our source code is available at https://github.com/BlingHe/PixelFolder.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    More experiments on other datasets and high-resolution are available in the supplementary material.

  2. 2.

    INR-GAN optimizes the CUDA kernels to speed up inference.

References

  1. Afifi, M., Brubaker, M.A., Brown, M.S.: HistoGAN: controlling colors of GAN-generated and real images via color histograms. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7941–7950 (2021)

    Google Scholar 

  2. Anokhin, I., Demochkin, K., Khakhulin, T., Sterkin, G., Lempitsky, V., Korzhenkov, D.: Image generators with conditionally-independent pixel synthesis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 14278–14287 (2021)

    Google Scholar 

  3. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein generative adversarial networks. In: International Conference on Machine Learning, pp. 214–223. PMLR (2017)

    Google Scholar 

  4. Brock, A., Donahue, J., Simonyan, K.: Large scale GAN training for high fidelity natural image synthesis. In: International Conference on Learning Representations (2018)

    Google Scholar 

  5. Chen, X., Duan, Y., Houthooft, R., Schulman, J., Sutskever, I., Abbeel, P.: InfoGAN: interpretable representation learning by information maximizing generative adversarial nets. In: Proceedings of the International Conference on Neural Information Processing Systems, pp. 2180–2188 (2016)

    Google Scholar 

  6. Choi, Y., Choi, M., Kim, M., Ha, J.W., Kim, S., Choo, J.: StarGAN: unified generative adversarial networks for multi-domain image-to-image translation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8789–8797 (2018)

    Google Scholar 

  7. Denton, E.L., Chintala, S., Fergus, R., et al.: Deep generative image models using a Laplacian pyramid of adversarial networks. In: Advances in Neural Information Processing Systems, vol. 28 (2015)

    Google Scholar 

  8. Dolhansky, B., Ferrer, C.C.: Eye in-painting with exemplar generative adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7902–7911 (2018)

    Google Scholar 

  9. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, vol. 27 (2014)

    Google Scholar 

  10. Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of Wasserstein GANs. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  11. He, Z., Kan, M., Shan, S.: EigenGAN: layer-wise eigen-learning for GANs. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 14408–14417 (2021)

    Google Scholar 

  12. Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs trained by a two time-scale update rule converge to a local Nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  13. Howard, A.G., et al.: MobileNets: efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861 (2017)

  14. Huang, X., Belongie, S.: Arbitrary style transfer in real-time with adaptive instance normalization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1501–1510 (2017)

    Google Scholar 

  15. Hudson, D.A., Zitnick, C.L.: Generative adversarial transformers. IN: Advances in Neural Information Processing Systems, vol. 139 (2021)

    Google Scholar 

  16. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017)

    Google Scholar 

  17. Ji, J., Ma, Y., Sun, X., Zhou, Y., Wu, Y., Ji, R.: Knowing what to learn: a metric-oriented focal mechanism for image captioning. IEEE Trans. Image Process. 31, 4321–4335 (2022). https://doi.org/10.1109/TIP.2022.3183434

    Article  Google Scholar 

  18. Karras, T., Aila, T., Laine, S., Lehtinen, J.: Progressive growing of GANs for improved quality, stability, and variation. In: International Conference on Learning Representations (2018)

    Google Scholar 

  19. Karras, T., Laine, S., Aila, T.: A style-based generator architecture for generative adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4401–4410 (2019)

    Google Scholar 

  20. Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J., Aila, T.: Analyzing and improving the image quality of StyleGAN. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8110–8119 (2020)

    Google Scholar 

  21. Kim, H., Choi, Y., Kim, J., Yoo, S., Uh, Y.: Exploiting spatial dimensions of latent in GAN for real-time image editing. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 852–861 (2021)

    Google Scholar 

  22. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  23. Kingma, D.P., Welling, M.: Auto-encoding variational Bayes. arXiv preprint arXiv:1312.6114 (2013)

  24. Kynkäänniemi, T., Karras, T., Laine, S., Lehtinen, J., Aila, T.: Improved precision and recall metric for assessing generative models. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

    Google Scholar 

  25. Lee, K., Chang, H., Jiang, L., Zhang, H., Tu, Z., Liu, C.: VitGAN: training GANs with vision transformers. arXiv preprint arXiv:2107.04589 (2021)

  26. Li, B., Qi, X., Lukasiewicz, T., Torr, P.: Controllable text-to-image generation. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

    Google Scholar 

  27. Li, X., et al.: Image-to-image translation via hierarchical style disentanglement. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8639–8648 (2021)

    Google Scholar 

  28. Liang, J., Zeng, H., Zhang, L.: High-resolution photorealistic image translation in real-time: a Laplacian pyramid translation network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 9392–9400 (2021)

    Google Scholar 

  29. Lin, C.H., Chang, C.C., Chen, Y.S., Juan, D.C., Wei, W., Chen, H.T.: Coco-GAN: generation by parts via conditional coordinating. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4512–4521 (2019)

    Google Scholar 

  30. Lin, J., Zhang, R., Ganz, F., Han, S., Zhu, J.Y.: Anycost GANs for interactive image synthesis and editing. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 14986–14996 (2021)

    Google Scholar 

  31. Liu, H., Navarrete Michelini, P., Zhu, D.: Deep networks for image-to-image translation with mux and demux layers. In: Leal-Taixé, L., Roth, S. (eds.) ECCV 2018. LNCS, vol. 11133, pp. 150–165. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11021-5_10

    Chapter  Google Scholar 

  32. Liu, R., et al.: An intriguing failing of convolutional neural networks and the CoordConv solution. In: Advances in Neural Information Processing Systems, vol. 31 (2018)

    Google Scholar 

  33. Liu, R., Ge, Y., Choi, C.L., Wang, X., Li, H.: DivCo: diverse conditional image synthesis via contrastive generative adversarial network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 16377–16386 (2021)

    Google Scholar 

  34. Luo, G., et al.: Towards language-guided visual recognition via dynamic convolutions. arXiv preprint arXiv:2110.08797 (2021)

  35. Luo, G., et al.: Towards lightweight transformer via group-wise transformation for vision-and-language tasks. IEEE Trans. Image Process. 31, 3386–3398 (2022)

    Article  Google Scholar 

  36. Ma, Y., et al.: Knowing what it is: semantic-enhanced dual attention transformer. IEEE Trans. Multimedia, 1 (2022). https://doi.org/10.1109/TMM.2022.3164787

  37. Mescheder, L., Geiger, A., Nowozin, S.: Which training methods for GANs do actually converge? In: International Conference on Machine Learning, pp. 3481–3490. PMLR (2018)

    Google Scholar 

  38. Park, T., Efros, A.A., Zhang, R., Zhu, J.-Y.: Contrastive learning for unpaired image-to-image translation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12354, pp. 319–345. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58545-7_19

    Chapter  Google Scholar 

  39. Park, T., et al.: Swapping autoencoder for deep image manipulation. Adv. Neural. Inf. Process. Syst. 33, 7198–7211 (2020)

    Google Scholar 

  40. Patashnik, O., Wu, Z., Shechtman, E., Cohen-Or, D., Lischinski, D.: StyleCLIP: text-driven manipulation of StyleGAN imagery. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2085–2094 (2021)

    Google Scholar 

  41. Peng, J., et al.: Knowledge-driven generative adversarial network for text-to-image synthesis. IEEE Trans. Multimedia (2021)

    Google Scholar 

  42. Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434 (2015)

  43. Sajjadi, M.S., Bachem, O., Lucic, M., Bousquet, O., Gelly, S.: Assessing generative models via precision and recall. In: Advances in Neural Information Processing Systems, vol. 31 (2018)

    Google Scholar 

  44. Shi, W., et al.: Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1874–1883 (2016)

    Google Scholar 

  45. Skorokhodov, I., Ignatyev, S., Elhoseiny, M.: Adversarial generation of continuous images. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 10753–10764 (2021)

    Google Scholar 

  46. Tang, H., Bai, S., Zhang, L., Torr, P.H.S., Sebe, N.: XingGAN for person image generation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12370, pp. 717–734. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58595-2_43

    Chapter  Google Scholar 

  47. Van Den Oord, A., Vinyals, O., et al.: Neural discrete representation learning. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  48. Wang, Y., Qi, L., Chen, Y.C., Zhang, X., Jia, J.: Image synthesis via semantic composition. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 13749–13758 (2021)

    Google Scholar 

  49. Wang, Y., et al.: HifiFace: 3D shape and semantic prior guided high fidelity face swapping. arXiv preprint arXiv:2106.09965 (2021)

  50. Xu, T., et al.: AttnGAN: fine-grained text to image generation with attentional generative adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1316–1324 (2018)

    Google Scholar 

  51. Yu, J., Lin, Z., Yang, J., Shen, X., Lu, X., Huang, T.S.: Generative image inpainting with contextual attention. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5505–5514 (2018)

    Google Scholar 

  52. Zhang, H., et al.: StackGAN++: realistic image synthesis with stacked generative adversarial networks. IEEE Trans. Pattern Anal. Mach. Intell. 41(8), 1947–1962 (2018)

    Article  Google Scholar 

  53. Zhang, Z., Xie, Y., Yang, L.: Photographic text-to-image synthesis with a hierarchically-nested adversarial network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6199–6208 (2018)

    Google Scholar 

  54. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017)

    Google Scholar 

  55. Zhu, P., Abdal, R., Qin, Y., Wonka, P.: SEAN: image synthesis with semantic region-adaptive normalization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5104–5113 (2020)

    Google Scholar 

Download references

Acknowledgement

This work is supported by the National Science Fund for Distinguished Young (No. 62025603), the National Natural Science Foundation of China (No. 62025603, No. U1705262, No. 62072386, No. 62072387, No. 62072389, No. 62002305, No.61772443, No. 61802324 and No. 61702136) and Guangdong Basic and Applied Basic Research Foundation (No. 2019B1515120049).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yiyi Zhou .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 4400 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

He, J. et al. (2022). PixelFolder: An Efficient Progressive Pixel Synthesis Network for Image Generation. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13674. Springer, Cham. https://doi.org/10.1007/978-3-031-19781-9_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19781-9_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19780-2

  • Online ISBN: 978-3-031-19781-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics