Abstract
Pixel synthesis is a promising research paradigm for image generation, which can well exploit pixel-wise prior knowledge for generation. However, existing methods still suffer from excessive memory footprint and computation overhead. In this paper, we propose a progressive pixel synthesis network towards efficient image generation, coined as PixelFolder. Specifically, PixelFolder formulates image generation as a progressive pixel regression problem and synthesizes images by a multi-stage paradigm, which can greatly reduce the overhead caused by large tensor transformations. In addition, we introduce novel pixel folding operations to further improve model efficiency while maintaining pixel-wise prior knowledge for end-to-end regression. With these innovative designs, we greatly reduce the expenditure of pixel synthesis, e.g., reducing \(89\%\) computation and \(53\%\) parameters compared to the latest pixel synthesis method called CIPS. To validate our approach, we conduct extensive experiments on two benchmark datasets, namely FFHQ and LSUN Church. The experimental results show that with much less expenditure, PixelFolder obtains new state-of-the-art (SOTA) performance on two benchmark datasets, i.e., 3.77 FID and 2.45 FID on FFHQ and LSUN Church, respectively. Meanwhile, PixelFolder is also more efficient than the SOTA methods like StyleGAN2, reducing about \(72\%\) computation and \(31\%\) parameters, respectively. These results greatly validate the effectiveness of the proposed PixelFolder. Our source code is available at https://github.com/BlingHe/PixelFolder.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
More experiments on other datasets and high-resolution are available in the supplementary material.
- 2.
INR-GAN optimizes the CUDA kernels to speed up inference.
References
Afifi, M., Brubaker, M.A., Brown, M.S.: HistoGAN: controlling colors of GAN-generated and real images via color histograms. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7941–7950 (2021)
Anokhin, I., Demochkin, K., Khakhulin, T., Sterkin, G., Lempitsky, V., Korzhenkov, D.: Image generators with conditionally-independent pixel synthesis. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 14278–14287 (2021)
Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein generative adversarial networks. In: International Conference on Machine Learning, pp. 214–223. PMLR (2017)
Brock, A., Donahue, J., Simonyan, K.: Large scale GAN training for high fidelity natural image synthesis. In: International Conference on Learning Representations (2018)
Chen, X., Duan, Y., Houthooft, R., Schulman, J., Sutskever, I., Abbeel, P.: InfoGAN: interpretable representation learning by information maximizing generative adversarial nets. In: Proceedings of the International Conference on Neural Information Processing Systems, pp. 2180–2188 (2016)
Choi, Y., Choi, M., Kim, M., Ha, J.W., Kim, S., Choo, J.: StarGAN: unified generative adversarial networks for multi-domain image-to-image translation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8789–8797 (2018)
Denton, E.L., Chintala, S., Fergus, R., et al.: Deep generative image models using a Laplacian pyramid of adversarial networks. In: Advances in Neural Information Processing Systems, vol. 28 (2015)
Dolhansky, B., Ferrer, C.C.: Eye in-painting with exemplar generative adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7902–7911 (2018)
Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, vol. 27 (2014)
Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of Wasserstein GANs. In: Advances in Neural Information Processing Systems, vol. 30 (2017)
He, Z., Kan, M., Shan, S.: EigenGAN: layer-wise eigen-learning for GANs. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 14408–14417 (2021)
Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., Hochreiter, S.: GANs trained by a two time-scale update rule converge to a local Nash equilibrium. In: Advances in Neural Information Processing Systems, vol. 30 (2017)
Howard, A.G., et al.: MobileNets: efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861 (2017)
Huang, X., Belongie, S.: Arbitrary style transfer in real-time with adaptive instance normalization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1501–1510 (2017)
Hudson, D.A., Zitnick, C.L.: Generative adversarial transformers. IN: Advances in Neural Information Processing Systems, vol. 139 (2021)
Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1125–1134 (2017)
Ji, J., Ma, Y., Sun, X., Zhou, Y., Wu, Y., Ji, R.: Knowing what to learn: a metric-oriented focal mechanism for image captioning. IEEE Trans. Image Process. 31, 4321–4335 (2022). https://doi.org/10.1109/TIP.2022.3183434
Karras, T., Aila, T., Laine, S., Lehtinen, J.: Progressive growing of GANs for improved quality, stability, and variation. In: International Conference on Learning Representations (2018)
Karras, T., Laine, S., Aila, T.: A style-based generator architecture for generative adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4401–4410 (2019)
Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J., Aila, T.: Analyzing and improving the image quality of StyleGAN. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8110–8119 (2020)
Kim, H., Choi, Y., Kim, J., Yoo, S., Uh, Y.: Exploiting spatial dimensions of latent in GAN for real-time image editing. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 852–861 (2021)
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)
Kingma, D.P., Welling, M.: Auto-encoding variational Bayes. arXiv preprint arXiv:1312.6114 (2013)
Kynkäänniemi, T., Karras, T., Laine, S., Lehtinen, J., Aila, T.: Improved precision and recall metric for assessing generative models. In: Advances in Neural Information Processing Systems, vol. 32 (2019)
Lee, K., Chang, H., Jiang, L., Zhang, H., Tu, Z., Liu, C.: VitGAN: training GANs with vision transformers. arXiv preprint arXiv:2107.04589 (2021)
Li, B., Qi, X., Lukasiewicz, T., Torr, P.: Controllable text-to-image generation. In: Advances in Neural Information Processing Systems, vol. 32 (2019)
Li, X., et al.: Image-to-image translation via hierarchical style disentanglement. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8639–8648 (2021)
Liang, J., Zeng, H., Zhang, L.: High-resolution photorealistic image translation in real-time: a Laplacian pyramid translation network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 9392–9400 (2021)
Lin, C.H., Chang, C.C., Chen, Y.S., Juan, D.C., Wei, W., Chen, H.T.: Coco-GAN: generation by parts via conditional coordinating. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 4512–4521 (2019)
Lin, J., Zhang, R., Ganz, F., Han, S., Zhu, J.Y.: Anycost GANs for interactive image synthesis and editing. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 14986–14996 (2021)
Liu, H., Navarrete Michelini, P., Zhu, D.: Deep networks for image-to-image translation with mux and demux layers. In: Leal-Taixé, L., Roth, S. (eds.) ECCV 2018. LNCS, vol. 11133, pp. 150–165. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11021-5_10
Liu, R., et al.: An intriguing failing of convolutional neural networks and the CoordConv solution. In: Advances in Neural Information Processing Systems, vol. 31 (2018)
Liu, R., Ge, Y., Choi, C.L., Wang, X., Li, H.: DivCo: diverse conditional image synthesis via contrastive generative adversarial network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 16377–16386 (2021)
Luo, G., et al.: Towards language-guided visual recognition via dynamic convolutions. arXiv preprint arXiv:2110.08797 (2021)
Luo, G., et al.: Towards lightweight transformer via group-wise transformation for vision-and-language tasks. IEEE Trans. Image Process. 31, 3386–3398 (2022)
Ma, Y., et al.: Knowing what it is: semantic-enhanced dual attention transformer. IEEE Trans. Multimedia, 1 (2022). https://doi.org/10.1109/TMM.2022.3164787
Mescheder, L., Geiger, A., Nowozin, S.: Which training methods for GANs do actually converge? In: International Conference on Machine Learning, pp. 3481–3490. PMLR (2018)
Park, T., Efros, A.A., Zhang, R., Zhu, J.-Y.: Contrastive learning for unpaired image-to-image translation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12354, pp. 319–345. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58545-7_19
Park, T., et al.: Swapping autoencoder for deep image manipulation. Adv. Neural. Inf. Process. Syst. 33, 7198–7211 (2020)
Patashnik, O., Wu, Z., Shechtman, E., Cohen-Or, D., Lischinski, D.: StyleCLIP: text-driven manipulation of StyleGAN imagery. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2085–2094 (2021)
Peng, J., et al.: Knowledge-driven generative adversarial network for text-to-image synthesis. IEEE Trans. Multimedia (2021)
Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434 (2015)
Sajjadi, M.S., Bachem, O., Lucic, M., Bousquet, O., Gelly, S.: Assessing generative models via precision and recall. In: Advances in Neural Information Processing Systems, vol. 31 (2018)
Shi, W., et al.: Real-time single image and video super-resolution using an efficient sub-pixel convolutional neural network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1874–1883 (2016)
Skorokhodov, I., Ignatyev, S., Elhoseiny, M.: Adversarial generation of continuous images. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 10753–10764 (2021)
Tang, H., Bai, S., Zhang, L., Torr, P.H.S., Sebe, N.: XingGAN for person image generation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12370, pp. 717–734. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58595-2_43
Van Den Oord, A., Vinyals, O., et al.: Neural discrete representation learning. In: Advances in Neural Information Processing Systems, vol. 30 (2017)
Wang, Y., Qi, L., Chen, Y.C., Zhang, X., Jia, J.: Image synthesis via semantic composition. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 13749–13758 (2021)
Wang, Y., et al.: HifiFace: 3D shape and semantic prior guided high fidelity face swapping. arXiv preprint arXiv:2106.09965 (2021)
Xu, T., et al.: AttnGAN: fine-grained text to image generation with attentional generative adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1316–1324 (2018)
Yu, J., Lin, Z., Yang, J., Shen, X., Lu, X., Huang, T.S.: Generative image inpainting with contextual attention. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5505–5514 (2018)
Zhang, H., et al.: StackGAN++: realistic image synthesis with stacked generative adversarial networks. IEEE Trans. Pattern Anal. Mach. Intell. 41(8), 1947–1962 (2018)
Zhang, Z., Xie, Y., Yang, L.: Photographic text-to-image synthesis with a hierarchically-nested adversarial network. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6199–6208 (2018)
Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2223–2232 (2017)
Zhu, P., Abdal, R., Qin, Y., Wonka, P.: SEAN: image synthesis with semantic region-adaptive normalization. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5104–5113 (2020)
Acknowledgement
This work is supported by the National Science Fund for Distinguished Young (No. 62025603), the National Natural Science Foundation of China (No. 62025603, No. U1705262, No. 62072386, No. 62072387, No. 62072389, No. 62002305, No.61772443, No. 61802324 and No. 61702136) and Guangdong Basic and Applied Basic Research Foundation (No. 2019B1515120049).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
He, J. et al. (2022). PixelFolder: An Efficient Progressive Pixel Synthesis Network for Image Generation. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13674. Springer, Cham. https://doi.org/10.1007/978-3-031-19781-9_37
Download citation
DOI: https://doi.org/10.1007/978-3-031-19781-9_37
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-19780-2
Online ISBN: 978-3-031-19781-9
eBook Packages: Computer ScienceComputer Science (R0)