Abstract
Video object re-identification (reID) aims at re-identifying the same object under non-overlapping cameras by matching the video tracklets with cropped video frames. The key point is how to make full use of spatio-temporal interactions to extract more accurate representation. However, there are dilemmas within existing approaches: (1) 3D solutions model the spatio-temporal interaction but are often troubled with the misalignment of adjacent frames, and (2) 2D solutions adopt a divide-and-conquer strategy against the misalignment but cannot take advantage of the spatio-temporal interactions. To address the above problems, we propose a Contextual Alignment Vision Transformer (CAViT) to the spatio-temporal interaction with a 2D solution. It contains a Multi-shape Patch Embedding (MPE) module and a Temporal Shift Attention (TSA) module. MPE is designed to retain spatial semantic information against the misalignment caused by pose, occlusion, or misdetection. TSA is designed to achieve contextual spatial semantic feature alignment and jointly model spatio-temporal clues. We further propose a Residual Position Embedding (RPE) to guide TSA in focusing on the temporal saliency clues. Experimental results on five video person reID datasets demonstrate the superiority of the proposed CAViT. Additionally, the experiment conducted on VVeRI-901-trial also shows the effectiveness of CAViT for the video vehicle reID. Our code is available on https://github.com/KimWu1994/CAViT.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aich, A., Zheng, M., Karanam, S., Chen, T., Roy-Chowdhury, A.K., Wu, Z.: Spatio-temporal representation factorization for video-based person re-identification, In: ICCV (2021)
Bertasius, G., Wang, H., Torresani, L.: Is space-time attention all you need for video understanding? arXiv preprint arXiv:2102.05095 (2021)
Bochkovskiy, A., Wang, C.Y., Liao, H.Y.M.: Yolov4: Optimal speed and accuracy of object detection. arXiv preprint arXiv:2004.10934 (2020)
Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: ECCV (2020)
Carreira, J., Zisserman, A.: Quo vadis, action recognition? a new model and the kinetics dataset. In: CVPR (2017)
Chen, C.F., Fan, Q., Panda, R.: Crossvit: Cross-attention multi-scale vision transformer for image classification. arXiv preprint arXiv:2103.14899 (2021)
Chen, G., Rao, Y., Lu, J., Zhou, J.: Temporal coherence or temporal motion: Which is more critical for video-based person re-identification? In: ECCV (2020)
Dehghan, A., Modiri Assari, S., Shah, M.: Gmmcp tracker: Globally optimal generalized maximum multi clique problem for multiple object tracking. In: CVPR (2015)
Dosovitskiy, A., et al.: An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)
Eom, C., Lee, G., Lee, J., Ham, B.: Video-based person re-identification with spatial and temporal memory networks. In: ICCV (2021)
Feichtenhofer, C., Fan, H., Malik, J., He, K.: Slowfast networks for video recognition. In: ICCV (2019)
Felzenszwalb, P.F., Girshick, R.B., McAllester, D., Ramanan, D.: Object detection with discriminatively trained part-based models. IEEE TPAMI (2009)
Gu, X., Chang, H., Ma, B., Zhang, H., Chen, X.: Appearance-preserving 3d convolution for video-based person re-identification. In: ECCV (2020)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR (2016)
He, L., Liao, X., Liu, W., Liu, X., Cheng, P., Mei, T.: Fastreid: a pytorch toolbox for real-world person re-identification. arXiv preprint arXiv:2006.02631 (2020)
He, S., Luo, H., Wang, P., Wang, F., Li, H., Jiang, W.: Transreid: Transformer-based object re-identification. arXiv preprint arXiv:2102.04378 (2021)
He, T., Jin, X., Shen, X., Huang, J., Chen, Z., Hua, X.S.: Dense interaction learning for video-based person re-identification supplementary materials. Identities (2021)
Hirzer, M., Beleznai, C., Roth, P.M., Bischof, H.: Person re-identification by descriptive and discriminative classification. In: Heyden, A., Kahl, F. (eds.) SCIA 2011. LNCS, vol. 6688, pp. 91–102. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21227-7_9
Hou, R., Chang, H., Ma, B., Huang, R., Shan, S.: Bicnet-tks: Learning efficient spatial-temporal representation for video person re-identification. In: CVPR (2021)
Hou, R., Chang, H., Ma, B., Shan, S., Chen, X.: Temporal complementary learning for video person re-identification. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12370, pp. 388–405. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58595-2_24
Hou, R., Ma, B., Chang, H., Gu, X., Shan, S., Chen, X.: Iaunet: Global context-aware feature learning for person reidentification. IEEE TNNLS (2020)
Hou, R., Ma, B., Chang, H., Gu, X., Shan, S., Chen, X.: Feature completion for occluded person re-identification. IEEE TPAMI (2021)
Zhao, J., Qi, F., G.R., Xu, L.: Vveri-901: Video vehicle re-identification dataset (2020). https://www.graviti.cn/open-datasets/VVeRI901’
Li, C., Zhong, Q., Xie, D., Pu, S.: Collaborative spatiotemporal feature learning for video action recognition. In: CVPR (2019)
Li, J., Wang, J., Tian, Q., Gao, W., Zhang, S.: Global-local temporal representations for video person re-identification. In: ICCV (2019)
Li, J., Zhang, S., Huang, T.: Multi-scale 3D convolution network for video based person re-identification. In: AAAI (2019)
Li, S., Bak, S., Carr, P., Wang, X.: Diversity regularized spatiotemporal attention for video-based person re-identification. In: CVPR (2018)
Li, S.Z.: Markov random field modeling in image analysis. Springer Science & Business Media (2009)
Li, X., Zhou, W., Zhou, Y., Li, H.: Relation-guided spatial attention and temporal refinement for video-based person re-identification. In: AAAI (2020)
Li, Y., He, J., Zhang, T., Liu, X., Zhang, Y., Wu, F.: Diverse part discovery: Occluded person re-identification with part-aware transformer. In: CVPR (2021)
Liao, S., Shao, L.: Transformer-based deep image matching for generalizable person re-identification. NeurIPS Workshops (2021)
Lin, J., Gan, C., Han, S.: Tsm: Temporal shift module for efficient video understanding. In: ICCV (2019)
Liu, C.T., Wu, C.W., Wang, Y.C.F., Chien, S.Y.: Spatially and temporally efficient non-local attention network for video-based person re-identification. arXiv preprint arXiv:1908.01683 (2019)
Liu, J., Zha, Z.J., Wu, W., Zheng, K., Sun, Q.: Spatial-temporal correlation and topology learning for person re-identification in videos. In: CVPR (2021)
Liu, X., Zhang, P., Yu, C., Lu, H., Yang, X.: Watching you: Global-guided reciprocal learning for video-based person re-identification. In: CVPR (2021)
Liu, Z., et al.: Swin transformer: Hierarchical vision transformer using shifted windows. ICCV (2021)
Liu, Z., et al.: Video swin transformer. arXiv preprint arXiv:2106.13230 (2021)
Luo, H., Gu, Y., Liao, X., Lai, S., Jiang, W.: Bag of tricks and a strong baseline for deep person re-identification. In: CVPR Workshops (2019)
Pathak, P., Eshratifar, A.E., Gormish, M.: Video person re-id: Fantastic techniques and where to find them. arXiv preprint arXiv:1912.05295 (2019)
Qiu, Z., Yao, T., Mei, T.: Learning spatio-temporal representation with pseudo-3d residual networks. In: ICCV (2017)
Tran, D., Bourdev, L., Fergus, R., Torresani, L., Paluri, M.: Learning spatiotemporal features with 3d convolutional networks. In: ICCV (2015)
Wang, T., Gong, S., Zhu, X., Wang, S.: Person re-identification by video ranking. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8692, pp. 688–703. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10593-2_45
Wang, Y., Zhang, P., Gao, S., Geng, X., Lu, H., Wang, D.: Pyramid spatial-temporal aggregation for video-based person re-identification. In: ICCV (2021)
Weng, X., Kitani, K.: Learning spatio-temporal features with two-stream deep 3d cnns for lipreading. arXiv preprint arXiv:1905.02540 (2019)
Wu, Y., et al.: Adaptive graph representation learning for video person re-identification. IEEE TIP (2020)
Yan, Y., et al.: Learning multi-granular hypergraphs for video-based person re-identification. In: CVPR (2020)
Yang, J., Zheng, W.S., Yang, Q., Chen, Y.C., Tian, Q.: Spatial-temporal graph convolutional network for video-based person re-identification. In: CVPR (2020)
Zhang, H., et al.: Resnest: Split-attention networks. arXiv preprint arXiv:2004.08955 (2020)
Zhang, H., Hao, Y., Ngo, C.W.: Token shift transformer for video classification. In: ACM MM (2021)
Zhang, Z., Lan, C., Zeng, W., Chen, Z.: Multi-granularity reference-aided attentive feature aggregation for video-based person re-identification. In: CVPR (2020)
Zhao, J., Qi, F., Ren, G., Xu, L.: Phd learning: Learning with pompeiu-hausdorff distances for video-based vehicle re-identification. In: CVPR (2021)
Zhao, Y., Shen, X., Jin, Z., Lu, H., Hua, X.s.: Attribute-driven feature disentangling and temporal aggregation for video person re-identification. In: CVPR (2019)
Zheng, L., et al.: MARS: a video benchmark for large-scale Person re-identification. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9910, pp. 868–884. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46466-4_52
Zhou, Z., Huang, Y., Wang, W., Wang, L., Tan, T.: See the forest for the trees: Joint spatial and temporal recurrent neural networks for video-based person re-identification. In: CVPR (2017)
Zhu, K., et al.: Aaformer: Auto-aligned transformer for person re-identification. arXiv preprint arXiv:2104.00921 (2021)
Acknowledgments
This research was supported by the National Key R &D Program of China under Grant No.2020YFC2003901, Chinese National Natural Science Foundation Projects #61876178, #61872367, #61976229, #62176256, #62106264 and the InnoHK program.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Wu, J. et al. (2022). CAViT: Contextual Alignment Vision Transformer for Video Object Re-identification. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13674. Springer, Cham. https://doi.org/10.1007/978-3-031-19781-9_32
Download citation
DOI: https://doi.org/10.1007/978-3-031-19781-9_32
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-19780-2
Online ISBN: 978-3-031-19781-9
eBook Packages: Computer ScienceComputer Science (R0)