Abstract
Retrieving desired videos using natural language queries has attracted increasing attention in research and industry fields as a huge number of videos appear on the internet. Some existing methods attempted to address this video retrieval problem by exploiting multi-modal information, especially audio-visual data of videos. However, many videos often have mismatched visual and audio cues for several reasons including background music, noise, and even missing sound. Therefore, the naive fusion of such mismatched visual and audio cues can negatively affect the semantic embedding of video scenes. Mismatch condition can be categorized into two cases: (i) Audio itself does not exist (ii) Audio exists but does not match with visual. To deal with (i), we introduce audio-visual associative memory (AVA-Memory) to associate audio cues even from videos without audio data. The associated audio cues can guide the video embedding feature to be aware of audio information even in the missing audio condition. To address (ii), we propose audio embedding adjustment by considering the degree of matching between visual and audio data. In this procedure, constructed AVA-Memory enables to figure out how well the visual and audio in the video are matched and to adjust the weighting between actual audio and associated audio. Experimental results show that the proposed method outperforms other state-of-the-art video retrieval methods. Further, we validate the effectiveness of the proposed network designs with ablation studies and analyses.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bain, M., Nagrani, A., Varol, G., Zisserman, A.: Frozen in time: A joint video and image encoder for end-to-end retrieval. In: IEEE/CVF International Conference on Computer Vision (ICCV), pp. 1728–1738 (2021)
Cai, Q., Pan, Y., Yao, T., Yan, C., Mei, T.: Memory matching networks for one-shot image recognition. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4080–4088 (2018)
Carreira, J., Zisserman, A.: Quo vadis, action recognition? a new model and the kinetics dataset. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6299–6308 (2017)
Chen, J., Hu, H., Wu, H., Jiang, Y., Wang, C.: Learning the best pooling strategy for visual semantic embedding. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 15789–15798 (2021)
Chen, S., Zhao, Y., Jin, Q., Wu, Q.: Fine-grained video-text retrieval with hierarchical graph reasoning. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 10638–10647 (2020)
Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. In: International Conference on Machine Learning (ICML), pp. 1597–1607. PMLR (2020)
Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: Pre-training of deep bidirectional transformers for language understanding. In: Conference of the North American Chapter of the Association for Computational Linguistics (NAACL-HLT) (2019)
Dong, J., Li, X., Snoek, C.G.: Predicting visual features from text for image and video caption retrieval. IEEE Trans. Multimedia 20(12), 3377–3388 (2018)
Dong, J., et al.: Dual encoding for zero-example video retrieval. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 9346–9355 (2019)
Dong, J., et al.: Dual encoding for video retrieval by text. IEEE Trans. Pattern Anal. Mach. Intell. 44, 4065–4080 (2021)
Dosovitskiy, A., et al.: An image is worth 16x16 words: Transformers for image recognition at scale. In: International Conference on Learning Representations (ICLR) (2020)
Dzabraev, M., Kalashnikov, M., Komkov, S., Petiushko, A.: Mdmmt: Multidomain multimodal transformer for video retrieval. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3354–3363 (2021)
Faghri, F., Fleet, D.J., Kiros, J.R., Fidler, S.: Vse++: Improving visual-semantic embeddings with hard negatives. In: British Machine Vision Conference (BMVC) (2018)
Francis, D., Anh Nguyen, P., Huet, B., Ngo, C.W.: Fusion of multimodal embeddings for ad-hoc video search. In: IEEE/CVF International Conference on Computer Vision Workshops (ICCVW) (2019)
Fu, Z., Liu, Q., Fu, Z., Wang, Y.: Stmtrack: Template-free visual tracking with space-time memory networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 13774–13783 (2021)
Gabeur, V., Nagrani, A., Sun, C., Alahari, K., Schmid, C.: Masking modalities for cross-modal video retrieval. In: IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), pp. 1766–1775 (2022)
Gabeur, V., Sun, C., Alahari, K., Schmid, C.: Multi-modal transformer for video retrieval. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12349, pp. 214–229. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58548-8_13
Gong, D., et al.: Memorizing normality to detect anomaly: Memory-augmented deep autoencoder for unsupervised anomaly detection. In: IEEE/CVF International Conference on Computer Vision (ICCV), pp. 1705–1714 (2019)
Han, T., Xie, W., Zisserman, A.: Memory-augmented dense predictive coding for video representation learning. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12348, pp. 312–329. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58580-8_19
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016)
Hu, P., Peng, X., Zhu, H., Zhen, L., Lin, J.: Learning cross-modal retrieval with noisy labels. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5403–5413 (2021)
Huang, Y., Wang, L.: Acmm: Aligned cross-modal memory for few-shot image and sentence matching. In: IEEE/CVF International Conference on Computer Vision (ICCV), pp. 5774–5783 (2019)
Kaiser, Ł., Nachum, O., Roy, A., Bengio, S.: Learning to remember rare events. In: International Conference on Learning Representations (ICLR) (2017)
Karpathy, A., Fei-Fei, L.: Deep visual-semantic alignments for generating image descriptions. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3128–3137 (2015)
Kim, J.U., Park, S., Ro, Y.M.: Robust small-scale pedestrian detection with cued recall via memory learning. In: IEEE/CVF International Conference on Computer Vision (ICCV), pp. 3050–3059 (2021)
Kim, M., Hong, J., Park, S.J., Ro, Y.M.: Multi-modality associative bridging through memory: Speech sound recollected from face video. In: IEEE/CVF International Conference on Computer Vision (ICCV), pp. 296–306 (2021)
Kingma, D., Ba, J.: Adam: A method for stochastic optimization. In: International Conference on Learning Representations (ICLR) (2015)
Kiros, R., Salakhutdinov, R., Zemel, R.S.: Unifying visual-semantic embeddings with multimodal neural language models. arXiv preprint arXiv:1411.2539 (2014)
Lee, S., Kim, H.G., Choi, D.H., Kim, H.I., Ro, Y.M.: Video prediction recalling long-term motion context via memory alignment learning. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3054–3063 (2021)
Lee, S., Kim, H.I., Ro, Y.M.: Weakly paired associative learning for sound and image representations via bimodal associative memory. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 10534–10543 (2022)
Li, X., Xu, C., Yang, G., Chen, Z., Dong, J.: W2VV++: fully deep learning for ad-hoc video search. In: ACM International Conference on Multimedia (ACM MM), pp. 1786–1794 (2019)
Li, X., Zhou, F., Xu, C., Ji, J., Yang, G.: Sea: Sentence encoder assembly for video retrieval by textual queries. IEEE Trans. Multimedia 23, 4351–4362 (2021)
Li, Y., et al.: Tgif: A new dataset and benchmark on animated gif description. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4641–4650 (2016)
Liu, H., Luo, R., Shang, F., Niu, M., Liu, Y.: Progressive semantic matching for video-text retrieval. In: ACM International Conference on Multimedia (ACM MM), pp. 5083–5091 (2021)
Liu, S., Fan, H., Qian, S., Chen, Y., Ding, W., Wang, Z.: Hit: Hierarchical transformer with momentum contrast for video-text retrieval. In: IEEE/CVF International Conference on Computer Vision (ICCV), pp. 11915–11925 (2021)
Liu, Y., Albanie, S., Nagrani, A., Zisserman, A.: Use what you have: Video retrieval using representations from collaborative experts. In: British Machine Vision Conference (BMVC) (2019)
Marchetti, F., Becattini, F., Seidenari, L., Bimbo, A.D.: Mantra: Memory augmented networks for multiple trajectory prediction. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 7143–7152 (2020)
Miech, A., Alayrac, J.B., Laptev, I., Sivic, J., Zisserman, A.: Thinking fast and slow: Efficient text-to-visual retrieval with transformers. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 9826–9836 (2021)
Miech, A., Alayrac, J.B., Smaira, L., Laptev, I., Sivic, J., Zisserman, A.: End-to-end learning of visual representations from uncurated instructional videos. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 9879–9889 (2020)
Miech, A., Laptev, I., Sivic, J.: Learning a text-video embedding from incomplete and heterogeneous data. arXiv preprint arXiv:1804.02516 (2018)
Miech, A., Zhukov, D., Alayrac, J.B., Tapaswi, M., Laptev, I., Sivic, J.: Howto100m: Learning a text-video embedding by watching hundred million narrated video clips. In: IEEE/CVF International Conference on Computer Vision (ICCV), pp. 2630–2640 (2019)
Mithun, N.C., Li, J., Metze, F., Roy-Chowdhury, A.K.: Learning joint embedding with multimodal cues for cross-modal video-text retrieval. In: ACM International Conference on Multimedia Retrieval (ICMR), pp. 19–27 (2018)
Otani, M., Nakashima, Y., Rahtu, E., Heikkilä, J., Yokoya, N.: Learning joint representations of videos and sentences with web image search. In: Hua, G., Jégou, H. (eds.) ECCV 2016. LNCS, vol. 9913, pp. 651–667. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46604-0_46
Park, H., Noh, J., Ham, B.: Learning memory-guided normality for anomaly detection. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 14372–14381 (2020)
Patrick, M., et al.: Support-set bottlenecks for video-text representation learning. In: International Conference on Learning Representations (ICLR) (2020)
Song, Y., Soleymani, M.: Polysemous visual-semantic embedding for cross-modal retrieval. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1979–1988 (2019)
Torabi, A., Tandon, N., Sigal, L.: Learning language-visual embedding for movie understanding with natural-language. arXiv preprint arXiv:1609.08124 (2016)
Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems (NeurIPS), pp. 5998–6008 (2017)
Wang, W., Gao, J., Yang, X., Xu, C.: Learning coarse-to-fine graph neural networks for video-text retrieval. IEEE Trans. Multimedia 23, 2386–2397 (2021)
Wang, X., Zhu, L., Yang, Y.: T2vlad: global-local sequence alignment for text-video retrieval. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5079–5088 (2021)
Wang, X., Wu, J., Chen, J., Li, L., Wang, Y.F., Wang, W.Y.: Vatex: A large-scale, high-quality multilingual dataset for video-and-language research. In: IEEE/CVF International Conference on Computer Vision (ICCV), pp. 4581–4591 (2019)
Wei, J., Xu, X., Yang, Y., Ji, Y., Wang, Z., Shen, H.T.: Universal weighting metric learning for cross-modal matching. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 13005–13014 (2020)
Wei, J., Yang, Y., Xu, X., Zhu, X., Shen, H.T.: Universal weighting metric learning for cross-modal retrieval. IEEE Trans. Pattern Anal. Mach. Intell. 44, 6534–6545 (2021)
Wray, M., Larlus, D., Csurka, G., Damen, D.: Fine-grained action retrieval through multiple parts-of-speech embeddings. In: IEEE/CVF International Conference on Computer Vision (ICCV), pp. 450–459 (2019)
Xie, S., Girshick, R., Dollár, P., Tu, Z., He, K.: Aggregated residual transformations for deep neural networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1492–1500 (2017)
Xu, J., Mei, T., Yao, T., Rui, Y.: Msr-vtt: A large video description dataset for bridging video and language. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5288–5296 (2016)
Xu, R., Xiong, C., Chen, W., Corso, J.: Jointly modeling deep video and compositional text to bridge vision and language in a unified framework. In: AAAI Conference on Artificial Intelligence (AAAI) (2015)
Yang, T., Chan, A.B.: Learning dynamic memory networks for object tracking. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11213, pp. 153–169. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01240-3_10
Yang, X., Dong, J., Cao, Y., Wang, X., Wang, M., Chua, T.S.: Tree-augmented cross-modal encoding for complex-query video retrieval. In: International ACM SIGIR Conference on Research and Development in Information Retrieval (ACM SIGIR), pp. 1339–1348 (2020)
Yu, Y., Kim, J., Kim, G.: A joint sequence fusion model for video question answering and retrieval. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 487–503. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_29
Zhang, B., Hu, H., Sha, F.: Cross-modal and hierarchical modeling of video and text. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11217, pp. 385–401. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01261-8_23
Zhu, L., Yang, Y.: Inflated episodic memory with region self-attention for long-tailed visual recognition. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4344–4353 (2020)
Acknowledgement
This work was supported by IITP grant(No. 2020-0-00004).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Lee, S., Park, S., Ro, Y.M. (2022). Audio-Visual Mismatch-Aware Video Retrieval via Association and Adjustment. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13674. Springer, Cham. https://doi.org/10.1007/978-3-031-19781-9_29
Download citation
DOI: https://doi.org/10.1007/978-3-031-19781-9_29
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-19780-2
Online ISBN: 978-3-031-19781-9
eBook Packages: Computer ScienceComputer Science (R0)