Abstract
Visible-Infrared Re-Identification (VI-ReID) is challenging in image retrievals. The modality discrepancy will easily make huge intra-class variations. Most existing methods either bridge different modalities through modality-invariance or generate the intermediate modality for better performance. Differently, this paper proposes a novel framework, named Modality Synergy Complement Learning Network (MSCLNet) with Cascaded Aggregation. Its basic idea is to synergize two modalities to construct diverse representations of identity-discriminative semantics and less noise. Then, we complement synergistic representations under the advantages of the two modalities. Furthermore, we propose the Cascaded Aggregation strategy for fine-grained optimization of the feature distribution, which progressively aggregates feature embeddings from the subclass, intra-class, and inter-class. Extensive experiments on SYSU-MM01 and RegDB datasets show that MSCLNet outperforms the state-of-the-art by a large margin. On the large-scale SYSU-MM01 dataset, our model can achieve 76.99% and 71.64% in terms of Rank-1 accuracy and mAP value. Our code will be available at https://github.com/bitreidgroup/VI-ReID-MSCLNet.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ahmed, S.M., Lejbolle, A.R., Panda, R., Roy-Chowdhury, A.K.: Camera on-boarding for person re-identification using hypothesis transfer learning. In: CVPR, pp. 12144–12153 (2020)
Bai, S., Tang, P., Torr, P.H., Latecki, L.J.: Re-ranking via metric fusion for object retrieval and person re-identification. In: CVPR, pp. 740–749 (2019)
Chen, G., Lin, C., Ren, L., Lu, J., Zhou, J.: Self-critical attention learning for person re-identification. In: ICCV, pp. 9637–9646 (2019)
Chen, T., et al.: ABD-net: attentive but diverse person re-identification. In: CVPR, pp. 8351–8361 (2019)
Chen, Y., Wan, L., Li, Z., Jing, Q., Sun, Z.: Neural feature search for RGB-infrared person re-identification. In: CVPR, pp. 587–597, June 2021
Choi, S., Lee, S., Kim, Y., Kim, T., Kim, C.: Hi-CMD: hierarchical cross-modality disentanglement for visible-infrared person re-identification. In: CVPR, pp. 10257–10266 (2020)
Dai, P., Ji, R., Wang, H., Wu, Q., Huang, Y.: Cross-modality person re-identification with generative adversarial training. In: IJCAI, pp. 677–683 (2018)
Deng, W., Zheng, L., Ye, Q., Kang, G., Yang, Y., Jiao, J.: Image-image domain adaptation with preserved self-similarity and domain-dissimilarity for person re-identification. In: CVPR, pp. 994–1003 (2018)
Feng, Z., Lai, J., Xie, X.: Learning modality-specific representations for visible-infrared person re-identification. IEEE TIP 29, 579–590 (2019)
Fu, C., Hu, Y., Wu, X., Shi, H., Mei, T., He, R.: CM-NAS: cross-modality neural architecture search for visible-infrared person re-identification. In: ICCV, pp. 11823–11832, October 2021
Hao, X., Zhao, S., Ye, M., Shen, J.: Cross-modality person re-identification via modality confusion and center aggregation. In: ICCV, pp. 16403–16412, October 2021
Hao, Y., Wang, N., Li, J., Gao, X.: HSME: hypersphere manifold embedding for visible thermal person re-identification. In: AAAI, pp. 8385–8392 (2019)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR, pp. 770–778 (2016)
Hermans, A., Beyer, L., Leibe, B.: In defense of the triplet loss for person re-identification. arXiv preprint arXiv:1703.07737 (2017)
Jia, M., Zhai, Y., Lu, S., Ma, S., Zhang, J.: A similarity inference metric for RGB-infrared cross-modality person re-identification. arXiv preprint arXiv:2007.01504 (2020)
Jin, X., Lan, C., Zeng, W., Chen, Z., Zhang, L.: Style normalization and restitution for generalizable person re-identification. In: CVPR, pp. 3143–3152 (2020)
Li, D., Wei, X., Hong, X., Gong, Y.: Infrared-visible cross-modal person re-identification with an x modality. In: AAAI, pp. 4610–4617 (2020)
Li, H., Wu, G., Zheng, W.S.: Combined depth space based architecture search for person re-identification. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6729–6738 (2021)
Li, Y., He, J., Zhang, T., Liu, X., Zhang, Y., Wu, F.: Diverse part discovery: occluded person re-identification with part-aware transformer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2898–2907 (2021)
Lin, Y., Xie, L., Wu, Y., Yan, C., Tian, Q.: Unsupervised person re-identification via softened similarity learning. In: CVPR, pp. 3390–3399 (2020)
Lu, Y., et al.: Cross-modality person re-identification with shared-specific feature transfer. In: CVPR, pp. 13379–13389 (2020)
Luo, C., Chen, Y., Wang, N., Zhang, Z.: Spectral feature transformation for person re-identification. In: CVPR, pp. 4976–4985 (2019)
Luo, H., Gu, Y., Liao, X., Lai, S., Jiang, W.: Bag of tricks and a strong baseline for deep person re-identification. In: CVPR Workshops (2019)
van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Lear. Res. 9, 2579–2605 (2008)
Melis, G., Kočiskỳ, T., Blunsom, P.: Mogrifier LSTM. arXiv preprint arXiv:1909.01792 (2019)
Meng, J., Zheng, W.S., Lai, J.H., Wang, L.: Deep graph metric learning for weakly supervised person re-identification. IEEE Trans. Pattern Anal. Mach. Intell. 44(10), 6074–6093 (2021)
Moon, H., Phillips, P.J.: Computational and performance aspects of PCA-based face-recognition algorithms. Perception 30(3), 303–321 (2001)
Nguyen, D.T., Hong, H.G., Kim, K.W., Park, K.R.: Person recognition system based on a combination of body images from visible light and thermal cameras. Sensors 17(3), 605 (2017)
Paisitkriangkrai, S., Shen, C., Van Den Hengel, A.: Learning to rank in person re-identification with metric ensembles. In: CVPR, pp. 1846–1855 (2015)
Pu, N., Chen, W., Liu, Y., Bakker, E.M., Lew, M.S.: Dual Gaussian-based variational subspace disentanglement for visible-infrared person re-identification. In: ACMMM, pp. 2149–2158 (2020)
Ren, C.X., Liang, B.H., Lei, Z.: Domain adaptive person re-identification via camera style generation and label propagation. IEEE Trans. Inf. Forensics Secur. 15, 1290–1302 (2019)
Sun, D., Yao, A., Zhou, A., Zhao, H.: Deeply-supervised knowledge synergy. In: CVPR, pp. 6997–7006 (2019)
Sun, X., Zheng, L.: Dissecting person re-identification from the viewpoint of viewpoint. In: CVPR, pp. 608–617 (2019)
Sun, Y., Zheng, L., Yang, Y., Tian, Q., Wang, S.: Beyond part models: person retrieval with refined part pooling (and a strong convolutional baseline). In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11208, pp. 501–518. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01225-0_30
Wang, G.A., et al.: Cross-modality paired-images generation for RGB-infrared person re-identification. In: AAAI, pp. 12144–12151 (2020)
Wang, G., et al.: High-order information matters: learning relation and topology for occluded person re-identification. In: CVPR, pp. 6449–6458 (2020)
Wang, G., Zhang, T., Cheng, J., Liu, S., Yang, Y., Hou, Z.: RGB-infrared cross-modality person re-identification via joint pixel and feature alignment. In: ICCV, pp. 3623–3632 (2019)
Wang, J., Zhu, X., Gong, S., Li, W.: Transferable joint attribute-identity deep learning for unsupervised person re-identification. In: CVPR, pp. 2275–2284 (2018)
Wang, Y., Chen, Z., Feng, W., Gang, W.: Person re-identification with cascaded pairwise convolutions. In: IEEE Conference on Computer Vision and Pattern Recognition (2018)
Wang, Z., Wang, Z., Zheng, Y., Chuang, Y.Y., Satoh, S.: Learning to reduce dual-level discrepancy for infrared-visible person re-identification. In: CVPR, pp. 618–626 (2019)
Wei, Z., Yang, X., Wang, N., Gao, X.: Syncretic modality collaborative learning for visible infrared person re-identification. In: ICCV, pp. 225–234, October 2021
Wu, A., Zheng, W.-S., Gong, S., Lai, J.: RGB-IR person re-identification by cross-modality similarity preservation. IJCV 128(6), 1765–1785 (2020). https://doi.org/10.1007/s11263-019-01290-1
Wu, A., Zheng, W.S., Yu, H.X., Gong, S., Lai, J.: RGB-infrared cross-modality person re-identification. In: ICCV, pp. 5380–5389 (2017)
Wu, D., Ye, M., Lin, G., Gao, X., Shen, J.: Person re-identification by context-aware part attention and multi-head collaborative learning. IEEE Trans. Inf. Forensics Secur. 17, 115–126 (2021)
Wu, Q., et al.: Discover cross-modality nuances for visible-infrared person re-identification. In: CVPR, pp. 4330–4339, June 2021
Xuan, S., Zhang, S.: Intra-inter camera similarity for unsupervised person re-identification. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11926–11935 (2021)
Ye, M., Lan, X., Leng, Q., Shen, J.: Cross-modality person re-identification via modality-aware collaborative ensemble learning. IEEE TIP 29, 9387–9399 (2020)
Ye, M., Lan, X., Li, J., Yuen, P.C.: Hierarchical discriminative learning for visible thermal person re-identification. In: AAAI, pp. 7501–7508 (2018)
Ye, M., Lan, X., Wang, Z., Yuen, P.C.: Bi-directional center-constrained top-ranking for visible thermal person re-identification. IEEE TIFS 15, 407–419 (2019)
Ye, M., Shen, J., J. Crandall, D., Shao, L., Luo, J.: Dynamic dual-attentive aggregation learning for visible-infrared person re-identification. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12362, pp. 229–247. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58520-4_14
Ye, M., Shen, J., Lin, G., Xiang, T., Shao, L., Hoi, S.C.H.: Deep learning for person re-identification: a survey and outlook. arXiv preprint arXiv:2001.04193 (2020)
Ye, M., Shen, J., Shao, L.: Visible-infrared person re-identification via homogeneous augmented tri-modal learning. IEEE TIFS 16, 728–739 (2020)
Yu, S., Li, S., Chen, D., Zhao, R., Yan, J., Qiao, Y.: COCAS: a large-scale clothes changing person dataset for re-identification. In: CVPR, pp. 3400–3409 (2020)
Zhang, X., Ge, Y., Qiao, Y., Li, H.: Refining pseudo labels with clustering consensus over generations for unsupervised object re-identification. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3436–3445 (2021)
Zhang, Z., Lan, C., Zeng, W., Chen, Z.: Multi-granularity reference-aided attentive feature aggregation for video-based person re-identification. In: CVPR, pp. 10407–10416 (2020)
Zhang, Z., Lan, C., Zeng, W., Jin, X., Chen, Z.: Relation-aware global attention for person re-identification. In: CVPR, pp. 3186–3195 (2020)
Zheng, F., et al.: Pyramidal person re-identification via multi-loss dynamic training. In: CVPR, pp. 8514–8522 (2019)
Zheng, M., Karanam, S., Wu, Z., Radke, R.J.: Re-identification with consistent attentive Siamese networks. In: CVPR, pp. 5735–5744 (2019)
Zhong, Z., Zheng, L., Zheng, Z., Li, S., Yang, Y.: Camera style adaptation for person re-identification. In: CVPR, pp. 5157–5166 (2018)
Zhu, X., Jing, X.Y., You, X., Zuo, W., Shan, S., Zheng, W.S.: Image to video person re-identification by learning heterogeneous dictionary pair with feature projection matrix. IEEE Trans. Inf. Forensics Secur. 13, 717–732 (2017)
Acknowledgements
This work was supported in part by the National Natural Science Foundation of China under Grant 61902027, and the Start-up Research Grant (SRG) of University of Macau.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Zhang, Y., Zhao, S., Kang, Y., Shen, J. (2022). Modality Synergy Complement Learning with Cascaded Aggregation for Visible-Infrared Person Re-Identification. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13674. Springer, Cham. https://doi.org/10.1007/978-3-031-19781-9_27
Download citation
DOI: https://doi.org/10.1007/978-3-031-19781-9_27
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-19780-2
Online ISBN: 978-3-031-19781-9
eBook Packages: Computer ScienceComputer Science (R0)