Skip to main content

Unstructured Feature Decoupling for Vehicle Re-identification

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Abstract

The misalignment of features caused by pose and viewpoint variances is a crucial problem in Vehicle Re-Identification (ReID). Previous methods align the features by structuring the vehicles from pre-defined vehicle parts (such as logos, windows, etc.) or attributes, which are inefficient because of additional manual annotation. To align the features without requirements of additional annotation, this paper proposes a Unstructured Feature Decoupling Network (UFDN), which consists of a transformer-based feature decomposing head (TDH) and a novel cluster-based decoupling constraint (CDC). Different from the structured knowledge used in previous decoupling methods, we aim to achieve more flexible unstructured decoupled features with diverse discriminative information as shown in Fig. 1. The self-attention mechanism in the decomposing head helps the model preliminarily learn the discriminative decomposed features in a global scope. To further learn diverse but aligned decoupled features, we introduce a cluster-based decoupling constraint consisting of a diversity constraint and an alignment constraint. Furthermore, we improve the alignment constraint into a modulated one to eliminate the negative impact of the outlier features that cannot align the clusters in semantics. Extensive experiments show the proposed UFDN achieves state-of-the-art performance on three popular Vehicle ReID benchmarks with both CNN and Transformer backbones. Our code is released at: https://github.com/damo-cv/UFDN-Reid.

The work was supervised by Hao Luo and Chen Chen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chen, H., Lagadec, B., Bremond, F.: Partition and reunion: A two-branch neural network for vehicle re-identification. In: CVPR Workshops, pp. 184–192 (2019)

    Google Scholar 

  2. Chen, T., et al.: Abd-net: Attentive but diverse person re-identification. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 8351–8361 (2019)

    Google Scholar 

  3. Chen, T.-S., Liu, C.-T., Wu, C.-W., Chien, S.-Y.: Orientation-aware vehicle re-identification with semantics-guided part attention network. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12347, pp. 330–346. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58536-5_20

    Chapter  Google Scholar 

  4. Chen, Y., Jing, L., Vahdani, E., Zhang, L., He, M., Tian, Y.: Multi-camera vehicle tracking and re-identification on ai city challenge 2019. In: CVPR Workshops, vol. 2 (2019)

    Google Scholar 

  5. Guo, H., Zhao, C., Liu, Z., Wang, J., Lu, H.: Learning coarse-to-fine structured feature embedding for vehicle re-identification. In: Thirty-Second AAAI Conference on Artificial Intelligence (2018)

    Google Scholar 

  6. Guo, H., Zhao, C., Liu, Z., Wang, J., Lu, H.: Learning coarse-to-fine structured feature embedding for vehicle re-identification. In: McIlraith, S.A., Weinberger, K.Q. (eds.) AAAI, pp. 6853–6860. AAAI Press (2018). www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16206

  7. He, B., Li, J., Zhao, Y., Tian, Y.: Part-regularized near-duplicate vehicle re-identification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3997–4005 (2019)

    Google Scholar 

  8. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask r-cnn. In: Proceedings of the IEEE international conference on computer vision, pp. 2961–2969 (2017)

    Google Scholar 

  9. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, June 27–30, 2016, pp. 770–778. IEEE Computer Society (2016). https://doi.org/10.1109/CVPR.2016.90

  10. He, S., Luo, H., Wang, P., Wang, F., Li, H., Jiang, W.: Transreid: Transformer-based object re-identification. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2021)

    Google Scholar 

  11. Khamis, S., Kuo, C.-H., Singh, V.K., Shet, V.D., Davis, L.S.: Joint learning for attribute-consistent Person re-identification. In: Agapito, L., Bronstein, M.M., Rother, C. (eds.) ECCV 2014. LNCS, vol. 8927, pp. 134–146. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16199-0_10

    Chapter  Google Scholar 

  12. Khorramshahi, P., Kumar, A., Peri, N., Rambhatla, S.S., Chen, J.C., Chellappa, R.: A dual-path model with adaptive attention for vehicle re-identification. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 6132–6141 (2019)

    Google Scholar 

  13. Khorramshahi, P., Peri, N., Chen, J., Chellappa, R.: The devil is in the details: self-supervised attention for vehicle re-identification. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12359, pp. 369–386. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58568-6_22

    Chapter  Google Scholar 

  14. Khorramshahi, P., Rambhatla, S.S., Chellappa, R.: Towards accurate visual and natural language-based vehicle retrieval systems. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, pp. 4183–4192 (2021)

    Google Scholar 

  15. Li, M., Huang, X., Zhang, Z.: Self-supervised geometric features discovery via interpretable attention for vehicle re-identification and beyond. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 194–204 (2021)

    Google Scholar 

  16. Li, S., Bak, S., Carr, P., Wang, X.: Diversity regularized spatiotemporal attention for video-based person re-identification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 369–378 (2018)

    Google Scholar 

  17. Lin, Y., et al.: Improving person re-identification by attribute and identity learning. Pattern Recogn. 95, 151–161 (2019)

    Article  Google Scholar 

  18. Liu, H., Tian, Y., Yang, Y., Pang, L., Huang, T.: Deep relative distance learning: Tell the difference between similar vehicles. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2167–2175 (2016)

    Google Scholar 

  19. Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.-Y., Berg, A.C.: SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2

    Chapter  Google Scholar 

  20. Liu, X., Liu, W., Mei, T., Ma, H.: Provid: progressive and multimodal vehicle reidentification for large-scale urban surveillance. IEEE Trans. Multimedia 20(3), 645–658 (2017)

    Article  Google Scholar 

  21. Loshchilov, I., Hutter, F.: Fixing weight decay regularization in adam. CoRR abs/1711.05101 (2017), arxiv.org/abs/1711.05101

  22. Lou, Y., Bai, Y., Liu, J., Wang, S., Duan, L.: Veri-wild: A large dataset and a new method for vehicle re-identification in the wild. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3235–3243 (2019)

    Google Scholar 

  23. Van der Maaten, L., Hinton, G.: Visualizing data using t-sne. J. Mach. Learn. Res. 9(2605), 2579–2605 (2008)

    Google Scholar 

  24. Meng, D., et al.: Parsing-based view-aware embedding network for vehicle re-identification. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7103–7112 (2020)

    Google Scholar 

  25. Mo, W., Lv, J.: Cascaded hierarchical context-aware vehicle re-identification. In: 2021 International Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE (2021)

    Google Scholar 

  26. Qian, J., Jiang, W., Luo, H., Yu, H.: Stripe-based and attribute-aware network: A two-branch deep model for vehicle re-identification. Measurement Science and Technology (2020)

    Google Scholar 

  27. Qian, W., He, Z., Peng, S., Chen, C., Wu, W.: Pseudo graph convolutional network for vehicle reid. In: Proceedings of the 29th ACM International Conference on Multimedia. p. 3162–3171. MM ’21, Association for Computing Machinery, New York, NY, USA (2021). https://doi.org/10.1145/3474085.3475462

  28. Qian, W., Yang, X., Peng, S., Yan, J., Guo, Y.: Learning modulated loss for rotated object detection. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 2458–2466 (2021)

    Google Scholar 

  29. Rao, Y., Chen, G., Lu, J., Zhou, J.: Counterfactual attention learning for fine-grained visual categorization and re-identification. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1025–1034 (2021)

    Google Scholar 

  30. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-cam: Visual explanations from deep networks via gradient-based localization. In: Proceedings of the IEEE international conference on computer vision, pp. 618–626 (2017)

    Google Scholar 

  31. Shen, F., Xie, Y., Zhu, J., Zhu, X., Zeng, H.: Git: Graph interactive transformer for vehicle re-identification. arXiv preprint arXiv:2107.05475 (2021)

  32. Sun, Y., Zheng, L., Yang, Y., Tian, Q., Wang, S.: Beyond part models: Person retrieval with refined part pooling (and a strong convolutional baseline). In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 480–496 (2018)

    Google Scholar 

  33. Suprem, A., Pu, C.: Looking glamorous: Vehicle re-id in heterogeneous cameras networks with global and local attention. arXiv preprint arXiv:2002.02256 (2020)

  34. Touvron, H., Cord, M., Sablayrolles, A., Synnaeve, G., Jégou, H.: Going deeper with image transformers. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2021)

    Google Scholar 

  35. Wang, H., Peng, J., Chen, D., Jiang, G., Zhao, T., Fu, X.: Attribute-guided feature learning network for vehicle re-identification. arXiv preprint arXiv:2001.03872 (2020)

  36. Wang, H., Peng, J., Jiang, G., Xu, F., Fu, X.: Discriminative feature and dictionary learning with part-aware model for vehicle re-identification. Neurocomputing 438, 55–62 (2021)

    Article  Google Scholar 

  37. Zhang, X., Zhang, R., Cao, J., Gong, D., You, M., Shen, C.: Part-guided attention learning for vehicle re-identification. CoRR abs/1909.06023 (2019), arxiv.org/abs/1909.06023

  38. Zhang, Z., Lan, C., Zeng, W., Jin, X., Chen, Z.: Relation-aware global attention for person re-identification. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3186–3195 (2020)

    Google Scholar 

  39. Zhao, Y., Shen, C., Wang, H., Chen, S.: Structural analysis of attributes for vehicle re-identification and retrieval. IEEE Trans. Intell. Transp. Syst. 21(2), 723–734 (2019)

    Article  Google Scholar 

  40. Zheng, A., Lin, X., Li, C., He, R., Tang, J.: Attributes guided feature learning for vehicle re-identification. arXiv preprint arXiv:1905.08997 (2019)

  41. Zhou, J., Su, B., Wu, Y.: Online joint multi-metric adaptation from frequent sharing-subset mining for person re-identification. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2909–2918 (2020)

    Google Scholar 

  42. Zhou, Y., Shao, L.: Viewpoint-aware attentive multi-view inference for vehicle re-identification. In: 2018 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2018, Salt Lake City, UT, USA, June 18–22, 2018, pp. 6489–6498. IEEE Computer Society (2018). https://doi.org/10.1109/CVPR.2018.00679. openaccess.thecvf.com/content_cvpr_2018/html/Zhou_Viewpoint-Aware_Attentive_Multi-View_CVPR_2018_paper.html

  43. Zhu, J., et al.: Vehicle re-identification using quadruple directional deep learning features. IEEE Trans. Intell. Transp. Syst. 21(1), 410–420 (2019)

    Article  Google Scholar 

  44. Zhu, R., Fang, J., Xu, H., Yu, H., Xue, J.: Dcdlearn: Multi-order deep cross-distance learning for vehicle re-identification. arXiv preprint arXiv:2003.11315 (2020)

Download references

Acknowledgements

This work was supported by the National Science Foundation of China under Grant NSFC 61906194 and the National Key R &D Program of China under Grant 2021YFF0602101. This work was supported by Alibaba Group through Alibaba Research Intern Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chen Chen .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 397 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Qian, W., Luo, H., Peng, S., Wang, F., Chen, C., Li, H. (2022). Unstructured Feature Decoupling for Vehicle Re-identification. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13674. Springer, Cham. https://doi.org/10.1007/978-3-031-19781-9_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19781-9_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19780-2

  • Online ISBN: 978-3-031-19781-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics