Skip to main content

Generative Adversarial Network for Future Hand Segmentation from Egocentric Video

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13673))

Included in the following conference series:

Abstract

We introduce the novel problem of anticipating a time series of future hand masks from egocentric video. A key challenge is to model the stochasticity of future head motions, which globally impact the head-worn camera video analysis. To this end, we propose a novel deep generative model – EgoGAN. Our model first utilizes a 3D Fully Convolutional Network to learn a spatio-temporal video representation for pixel-wise visual anticipation. It then generates future head motion using the Generative Adversarial Network (GAN), and predicts the future hand masks based on both the encoded video representation and the generated future head motion. We evaluate our method on both the EPIC-Kitchens and the EGTEA Gaze+ datasets. We conduct detailed ablation studies to validate the design choices of our approach. Furthermore, we compare our method with previous state-of-the-art methods on future image segmentation and provide extensive analysis to show that our method can more accurately predict future hand masks. Project page: https://vjwq.github.io/EgoGAN/.

W. Jia and M. Liu—Equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cai, M., Lu, F., Sato, Y.: Generalizing hand segmentation in egocentric videos with uncertainty-guided model adaptation. In: CVPR (2020)

    Google Scholar 

  2. Carreira, J., Zisserman, A.: Quo vadis, action recognition? a new model and the kinetics dataset. In: CVPR (2017)

    Google Scholar 

  3. Chandra, S., Couprie, C., Kokkinos, I.: Deep spatio-temporal random fields for efficient video segmentation. In: CVPR (2018)

    Google Scholar 

  4. Chiu, H.K., Adeli, E., Niebles, J.C.: Segmenting the future. In: ICRA-L (2020)

    Google Scholar 

  5. Damen, D., et al.: Scaling egocentric vision: the dataset. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11208, pp. 753–771. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01225-0_44

    Chapter  Google Scholar 

  6. Dessalene, E., Devaraj, C., Maynord, M., Fermuller, C., Aloimonos, Y.: Forecasting action through contact representations from first person video. TPAMI (2021)

    Google Scholar 

  7. Fathi, A., Hodgins, J.K., Rehg, J.M.: Social interactions: a first-person perspective. In: CVPR (2012)

    Google Scholar 

  8. Fathi, A., Farhadi, A., Rehg, J.M.: Understanding egocentric activities. In: ICCV (2011)

    Google Scholar 

  9. Fathi, A., Li, Y., Rehg, J.M.: Learning to recognize daily actions using gaze. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7572, pp. 314–327. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33718-5_23

    Chapter  Google Scholar 

  10. Fragkiadaki, K., Levine, S., Felsen, P., Malik, J.: Recurrent network models for human dynamics. In: ICCV (2015)

    Google Scholar 

  11. Furnari, A., Farinella, G.M.: What would you expect? anticipating egocentric actions with rolling-unrolling lstms and modality attention. In: ICCV (2019)

    Google Scholar 

  12. Gao, J., Yang, Z., Nevatia, R.: Red: reinforced encoder-decoder networks for action anticipation. In: BMVC (2017)

    Google Scholar 

  13. Girdhar, R., Grauman, K.: Anticipative video transformer. In: ICCV (2021)

    Google Scholar 

  14. Goodfellow, I., et al.: Generative adversarial nets. In: NeurIPS (2014)

    Google Scholar 

  15. Gregor, K., Danihelka, I., Graves, A., Rezende, D., Wierstra, D.: Draw: a recurrent neural network for image generation. In: International Conference on Machine Learning, pp. 1462–1471. PMLR (2015)

    Google Scholar 

  16. Guan, J., Yuan, Y., Kitani, K.M., Rhinehart, N.: Generative hybrid representations for activity forecasting with no-regret learning. In: CVPR (2020)

    Google Scholar 

  17. Gui, L.-Y., Wang, Y.-X., Liang, X., Moura, J.M.F.: Adversarial geometry-aware human motion prediction. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11208, pp. 823–842. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01225-0_48

    Chapter  Google Scholar 

  18. Gupta, A., Johnson, J., Fei-Fei, L., Savarese, S., Alahi, A.: Social gan: socially acceptable trajectories with generative adversarial networks. In: CVPR (2018)

    Google Scholar 

  19. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR (2016)

    Google Scholar 

  20. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: ICML (2015)

    Google Scholar 

  21. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: CVPR (2017)

    Google Scholar 

  22. Jin, X., et al.: Predicting scene parsing and motion dynamics in the future. In: NeurIPS (2017)

    Google Scholar 

  23. Kataoka, H., Miyashita, Y., Hayashi, M., Iwata, K., Satoh, Y.: Recognition of transitional action for short-term action prediction using discriminative temporal cnn feature. In: BMVC (2016)

    Google Scholar 

  24. Ke, Q., Fritz, M., Schiele, B.: Time-conditioned action anticipation in one shot. In: CVPR (2019)

    Google Scholar 

  25. Kitani, K.M., Ziebart, B.D., Bagnell, J.A., Hebert, M.: Activity forecasting. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7575, pp. 201–214. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33765-9_15

    Chapter  Google Scholar 

  26. Li, Y.: Learning embodied models of actions from first person video. Ph.D. thesis, Georgia Institute of Technology (2017)

    Google Scholar 

  27. Li, Y., Fathi, A., Rehg, J.M.: Learning to predict gaze in egocentric video. In: ICCV (2013)

    Google Scholar 

  28. Li, Y., Liu, M., Rehg, J.M.: In the eye of beholder: joint learning of gaze and actions in first person video. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11209, pp. 639–655. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01228-1_38

    Chapter  Google Scholar 

  29. Li, Y., Liu, M., Rehg, J.M.: In the eye of the beholder: gaze and actions in first person video. TPAMI (2021)

    Google Scholar 

  30. Li, Y., Ye, Z., Rehg, J.M.: Delving into egocentric actions. In: CVPR (2015)

    Google Scholar 

  31. Liu, M., et al.: Egocentric activity recognition and localization on a 3D map. arXiv preprint arXiv:2105.09544 (2021)

  32. Liu, M., Tang, S., Li, Y., Rehg, J.M.: Forecasting human-object interaction: joint prediction of motor attention and actions in first person video. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 704–721. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_41

    Chapter  Google Scholar 

  33. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: CVPR (2015)

    Google Scholar 

  34. Luc, P., Couprie, C., LeCun, Y., Verbeek, J.: Predicting future instance segmentation by forecasting convolutional features. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11213, pp. 593–608. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01240-3_36

    Chapter  Google Scholar 

  35. Luc, P., Neverova, N., Couprie, C., Verbeek, J., LeCun, Y.: Predicting deeper into the future of semantic segmentation. In: ICCV (2017)

    Google Scholar 

  36. Ma, M., Fan, H., Kitani, K.M.: Going deeper into first-person activity recognition. In: CVPR (2016)

    Google Scholar 

  37. Mirza, M., Osindero, S.: Conditional generative adversarial nets. arXiv preprint arXiv:1411.1784 (2014)

  38. Moltisanti, D., Wray, M., Mayol-Cuevas, W., Damen, D.: Trespassing the boundaries: labeling temporal bounds for object interactions in egocentric video. In: ICCV (2017)

    Google Scholar 

  39. Nilsson, D., Sminchisescu, C.: Semantic video segmentation by gated recurrent flow propagation. In: CVPR (2018)

    Google Scholar 

  40. Odena, A., Olah, C., Shlens, J.: Conditional image synthesis with auxiliary classifier gans. In: ICML (2017)

    Google Scholar 

  41. Pathak, D., Krahenbuhl, P., Donahue, J., Darrell, T., Efros, A.A.: Context encoders: feature learning by inpainting. In: CVPR (2016)

    Google Scholar 

  42. Pelz, J., Hayhoe, M., Loeber, R.: The coordination of eye, head, and hand movements in a natural task. Exp. Brain Res. 139(3), 266–277 (2001)

    Article  Google Scholar 

  43. Pérez, J.S., Meinhardt-Llopis, E., Facciolo, G.: TV-L1 optical flow estimation. In: IPOL (2013)

    Google Scholar 

  44. Poleg, Y., Arora, C., Peleg, S.: Temporal segmentation of egocentric videos. In: CVPR (2014)

    Google Scholar 

  45. Poleg, Y., Ephrat, A., Peleg, S., Arora, C.: Compact CNN for indexing egocentric videos. In: WACV (2016)

    Google Scholar 

  46. Rochan, M., et al.: Future semantic segmentation with convolutional lstm. In: BMVC (2018)

    Google Scholar 

  47. Rodriguez, C., Fernando, B., Li, H.: Action anticipation by predicting future dynamic images. In: Leal-Taixé, L., Roth, S. (eds.) ECCV 2018. LNCS, vol. 11131, pp. 89–105. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11015-4_10

    Chapter  Google Scholar 

  48. Shan, D., Geng, J., Shu, M., Fouhey, D.: Understanding human hands in contact at internet scale. In: CVPR (2020)

    Google Scholar 

  49. Shen, Y., Ni, B., Li, Z., Zhuang, N.: Egocentric activity prediction via event modulated attention. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11206, pp. 202–217. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01216-8_13

    Chapter  Google Scholar 

  50. Simonyan, K., Zisserman, A.: Two-stream convolutional networks for action recognition in videos. In: NeurIPS (2014)

    Google Scholar 

  51. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: ICLR (2015)

    Google Scholar 

  52. Soo Park, H., Shi, J.: Social saliency prediction. In: CVPR (2015)

    Google Scholar 

  53. Soran, B., Farhadi, A., Shapiro, L.: Generating notifications for missing actions: Don’t forget to turn the lights off! In: ICCV (2015)

    Google Scholar 

  54. Tsai, Y.H., Yang, M.H., Black, M.J.: Video segmentation via object flow. In: CVPR (2016)

    Google Scholar 

  55. Tulyakov, S., Liu, M.Y., Yang, X., Kautz, J.: Mocogan: decomposing motion and content for video generation. In: CVPR (2018)

    Google Scholar 

  56. Vondrick, C., Pirsiavash, H., Torralba, A.: Anticipating visual representations from unlabeled video. In: CVPR (2016)

    Google Scholar 

  57. Vondrick, C., Pirsiavash, H., Torralba, A.: Generating videos with scene dynamics. In: NeurIPS (2016)

    Google Scholar 

  58. Walker, J., Doersch, C., Gupta, A., Hebert, M.: An uncertain future: forecasting from static images using variational autoencoders. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9911, pp. 835–851. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46478-7_51

    Chapter  Google Scholar 

  59. Walker, J., Marino, K., Gupta, A., Hebert, M.: The pose knows: video forecasting by generating pose futures. In: ICCV (2017)

    Google Scholar 

  60. Wang, W., Zhou, T., Porikli, F., Crandall, D., Van Gool, L.: A survey on deep learning technique for video segmentation. arXiv preprint arXiv:2107.01153 (2021)

  61. Wang, X., Girshick, R., Gupta, A., He, K.: Non-local neural networks. In: CVPR (2018)

    Google Scholar 

  62. Xu, Y.S., Fu, T.J., Yang, H.K., Lee, C.Y.: Dynamic video segmentation network. In: CVPR (2018)

    Google Scholar 

  63. Yagi, T., Mangalam, K., Yonetani, R., Sato, Y.: Future person localization in first-person videos. In: CVPR (2018)

    Google Scholar 

  64. Yang, L., Fan, Y., Xu, N.: Video instance segmentation. In: ICCV (2019)

    Google Scholar 

  65. Yonetani, R., Kitani, K.M., Sato, Y.: Recognizing micro-actions and reactions from paired egocentric videos. In: CVPR (2016)

    Google Scholar 

  66. Zhang, H., et al.: Stackgan: text to photo-realistic image synthesis with stacked generative adversarial networks. In: ICCV (2017)

    Google Scholar 

  67. Zhang, M., Teck Ma, K., Hwee Lim, J., Zhao, Q., Feng, J.: Deep future gaze: gaze anticipation on egocentric videos using adversarial networks. In: CVPR (2017)

    Google Scholar 

  68. Zhang, Y., Black, M.J., Tang, S.: We are more than our joints: predicting how 3D bodies move. In: CVPR (2021)

    Google Scholar 

  69. Zhang, Y., Hassan, M., Neumann, H., Black, M.J., Tang, S.: Generating 3D people in scenes without people. In: CVPR (2020)

    Google Scholar 

Download references

Acknowledgments

Portions of this project were supported in part by a gift from Facebook. We thank Fiona Ryan for the valuable feedback.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenqi Jia .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (zip 15358 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jia, W., Liu, M., Rehg, J.M. (2022). Generative Adversarial Network for Future Hand Segmentation from Egocentric Video. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13673. Springer, Cham. https://doi.org/10.1007/978-3-031-19778-9_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19778-9_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19777-2

  • Online ISBN: 978-3-031-19778-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics