Skip to main content

Egocentric Activity Recognition and Localization on a 3D Map

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13673))

Included in the following conference series:

Abstract

Given a video captured from a first person perspective and the environment context of where the video is recorded, can we recognize what the person is doing and identify where the action occurs in the 3D space? We address this challenging problem of jointly recognizing and localizing actions of a mobile user on a known 3D map from egocentric videos. To this end, we propose a novel deep probabilistic model. Our model takes the inputs of a Hierarchical Volumetric Representation (HVR) of the 3D environment and an egocentric video, infers the 3D action location as a latent variable, and recognizes the action based on the video and contextual cues surrounding its potential locations. To evaluate our model, we conduct extensive experiments on the subset of Ego4D dataset, in which both human naturalistic actions and photo-realistic 3D environment reconstructions are captured. Our method demonstrates strong results on both action recognition and 3D action localization across seen and unseen environments. We believe our work points to an exciting research direction in the intersection of egocentric vision, and 3D scene understanding.

M. Liu—This work was primarily done during an internship at Meta Reality Labs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Armeni, I., et al.: 3D scene graph: a structure for unified semantics, 3D space, and camera. In: ICCV (2019)

    Google Scholar 

  2. Carreira, J., Zisserman, A.: Quo Vadis, action recognition? a new model and the kinetics dataset. In: CVPR (2017)

    Google Scholar 

  3. Chen, X., Ma, H., Wan, J., Li, B., Xia, T.: Multi-view 3D object detection network for autonomous driving. In: CVPR (2017)

    Google Scholar 

  4. Damen, D., et al.: The epic-kitchens dataset: collection, challenges and baselines. IEEE Computer Architecture Letters (01) (2020)

    Google Scholar 

  5. Delaitre, V., Fouhey, D.F., Laptev, I., Sivic, J., Gupta, A., Efros, A.A.: Scene semantics from long-term observation of people. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7577, pp. 284–298. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33783-3_21

    Chapter  Google Scholar 

  6. Engelcke, M., Rao, D., Wang, D.Z., Tong, C.H., Posner, I.: Vote3Deep: fast object detection in 3D point clouds using efficient convolutional neural networks. In: ICRA (2017)

    Google Scholar 

  7. Fang, K., Wu, T.L., Yang, D., Savarese, S., Lim, J.J.: Demo2Vec: reasoning object affordances from online videos. In: CVPR (2018)

    Google Scholar 

  8. Fouhey, D.F., Delaitre, V., Gupta, A., Efros, A.A., Laptev, I., Sivic, J.: People watching: human actions as a cue for single view geometry. IJCV (2014)

    Google Scholar 

  9. Frahm, J.-M., et al.: Building Rome on a cloudless day. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6314, pp. 368–381. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15561-1_27

  10. Furnari, A., Farinella, G.M.: What would you expect? anticipating egocentric actions with rolling-unrolling LSTMs and modality attention. In: ICCV (2019)

    Google Scholar 

  11. Gordon, D., Kadian, A., Parikh, D., Hoffman, J., Batra, D.: SplitNet: Sim2Sim and Task2Task transfer for embodied visual navigation. In: ICCV (2019)

    Google Scholar 

  12. Grabner, H., Gall, J., Van Gool, L.: What makes a chair a chair? In: CVPR (2011)

    Google Scholar 

  13. Grauman, K., et al.: Ego4D: around the world in 3,000 hours of egocentric video. arXiv preprint arXiv:2110.07058 (2021)

  14. Guan, J., Yuan, Y., Kitani, K.M., Rhinehart, N.: Generative hybrid representations for activity forecasting with no-regret learning. In: CVPR (2020)

    Google Scholar 

  15. Gupta, A., Satkin, S., Efros, A.A., Hebert, M.: From 3D scene geometry to human workspace. In: CVPR (2011)

    Google Scholar 

  16. Hassan, M., Choutas, V., Tzionas, D., Black, M.J.: Resolving 3D human pose ambiguities with 3D scene constraints. In: ICCV (2019)

    Google Scholar 

  17. Henriques, J.F., Vedaldi, A.: Mapnet: An allocentric spatial memory for mapping environments. In: CVPR (2018)

    Google Scholar 

  18. Huang, Y., Cai, M., Li, Z., Sato, Y.: Predicting gaze in egocentric video by learning task-dependent attention transition. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11208, pp. 789–804. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01225-0_46

    Chapter  Google Scholar 

  19. Jang, E., Gu, S., Poole, B.: Categorical reparameterization with gumbel-softmax. In: ICLR (2017)

    Google Scholar 

  20. Jiang, Y., Koppula, H., Saxena, A.: Hallucinated humans as the hidden context for labeling 3D scenes. In: CVPR (2013)

    Google Scholar 

  21. Jiang, Y., Lim, M., Saxena, A.: Learning object arrangements in 3D scenes using human context. In: ICML (2012)

    Google Scholar 

  22. Karthika, S., Praveena, P., GokilaMani, M.: Hololens. Int. J. Comput. Sci. Mobile Comput. 6(2), 41–50 (2017)

    Google Scholar 

  23. Kazakos, E., Nagrani, A., Zisserman, A., Damen, D.: EPIC-Fusion: audio-visual temporal binding for egocentric action recognition. In: ICCV (2019)

    Google Scholar 

  24. Ke, Q., Fritz, M., Schiele, B.: Time-conditioned action anticipation in one shot. In: CVPR (2019)

    Google Scholar 

  25. Koppula, H.S., Gupta, R., Saxena, A.: Learning human activities and object affordances from RGB-D videos. Int. J. Robot. Res. 32(8), 951–970 (2013)

    Article  Google Scholar 

  26. Kundu, A., Li, Y., Dellaert, F., Li, F., Rehg, J.M.: Joint semantic segmentation and 3D reconstruction from monocular video. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8694, pp. 703–718. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10599-4_45

    Chapter  Google Scholar 

  27. Li, J., et al.: Unsupervised reinforcement learning of transferable meta-skills for embodied navigation. In: CVPR (2020)

    Google Scholar 

  28. Li, Y., Fathi, A., Rehg, J.M.: Learning to predict gaze in egocentric video. In: ICCV (2013)

    Google Scholar 

  29. Li, Y., Liu, M., Rehg, J.M.: In the eye of beholder: joint learning of gaze and actions in first person video. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11209, pp. 639–655. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01228-1_38

    Chapter  Google Scholar 

  30. Li, Y., Liu, M., Rehg, J.M.: In the eye of the beholder: gaze and actions in first person video. TPAMI (2021)

    Google Scholar 

  31. Li, Y., Ye, Z., Rehg, J.M.: Delving into egocentric actions. In: CVPR (2015)

    Google Scholar 

  32. Liu, M., Tang, S., Li, Y., Rehg, J.M.: Forecasting human-object interaction: joint prediction of motor attention and actions in first person video. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.M. (eds.) Computer Vision - ECCV 2020, pp. 704–721. Springer International Publishing, Cham (2020)

    Chapter  Google Scholar 

  33. Liu, M., Yang, D., Zhang, Y., Cui, Z., Rehg, J.M., Tang, S.: 4D human body capture from egocentric video via 3D scene grounding. 3DV (2021)

    Google Scholar 

  34. Ma, M., Fan, H., Kitani, K.M.: Going deeper into first-person activity recognition. In: CVPR (2016)

    Google Scholar 

  35. Maddison, C.J., Mnih, A., Teh, Y.W.: The concrete distribution: a continuous relaxation of discrete random variables. In: ICLR (2017)

    Google Scholar 

  36. Moltisanti, D., Wray, M., Mayol-Cuevas, W., Damen, D.: Trespassing the boundaries: labeling temporal bounds for object interactions in egocentric video. In: ICCV (2017)

    Google Scholar 

  37. Nagarajan, T., Feichtenhofer, C., Grauman, K.: Grounded human-object interaction hotspots from video. In: ICCV (2019)

    Google Scholar 

  38. Nagarajan, T., Li, Y., Feichtenhofer, C., Grauman, K.: EGO-TOPO: environment affordances from egocentric video. In: CVPR (2020)

    Google Scholar 

  39. Ng, E., Xiang, D., Joo, H., Grauman, K.: You2Me: inferring body pose in egocentric video via first and second person interactions. In: CVPR (2020)

    Google Scholar 

  40. Park, H., Jain, E., Sheikh, Y.: 3D social saliency from head-mounted cameras. In: NeurIPS (2012)

    Google Scholar 

  41. Pirsiavash, H., Ramanan, D.: Detecting activities of daily living in first-person camera views. In: CVPR (2012)

    Google Scholar 

  42. Poleg, Y., Arora, C., Peleg, S.: Head motion signatures from egocentric videos. In: ACCV (2014)

    Google Scholar 

  43. Poleg, Y., Arora, C., Peleg, S.: Temporal segmentation of egocentric videos. In: CVPR (2014)

    Google Scholar 

  44. Qi, C.R., Su, H., Mo, K., Guibas, L.J.: PointNet: deep learning on point sets for 3D classification and segmentation. In: CVPR (2017)

    Google Scholar 

  45. Qi, C.R., Yi, L., Su, H., Guibas, L.J.: PointNet++: deep hierarchical feature learning on point sets in a metric space. In: NeurIPS (2017)

    Google Scholar 

  46. Rhinehart, N., Kitani, K.M.: Learning action maps of large environments via first-person vision. In: CVPR (2016)

    Google Scholar 

  47. Rhinehart, N., Kitani, K.M.: First-person activity forecasting with online inverse reinforcement learning. In: ICCV (2017)

    Google Scholar 

  48. Sattler, T., Leibe, B., Kobbelt, L.: Improving image-based localization by active correspondence search. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7572, pp. 752–765. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33718-5_54

    Chapter  Google Scholar 

  49. Savva, M., Chang, A.X., Hanrahan, P., Fisher, M., Nießner, M.: SceneGrok: inferring action maps in 3D environments. In: TOG (2014)

    Google Scholar 

  50. Schönberger, J.L., Frahm, J.M.: Structure-from-motion revisited. In: CVPR (2016)

    Google Scholar 

  51. Serra, G., Camurri, M., Baraldi, L., Benedetti, M., Cucchiara, R.: Hand segmentation for gesture recognition in ego-vision. In: Proceedings of the 3rd ACM International Workshop on Interactive Multimedia on Mobile & Portable Devices, pp. 31–36 (2013)

    Google Scholar 

  52. Shen, Y., Ni, B., Li, Z., Zhuang, N.: Egocentric activity prediction via event modulated attention. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11206, pp. 202–217. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01216-8_13

    Chapter  Google Scholar 

  53. Song, S., Xiao, J.: Sliding shapes for 3D object detection in depth images. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8694, pp. 634–651. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10599-4_41

    Chapter  Google Scholar 

  54. Song, S., Xiao, J.: Deep sliding shapes for amodal 3D object detection in RGB-D images. In: CVPR (2016)

    Google Scholar 

  55. Soo Park, H., Hwang, J.J., Niu, Y., Shi, J.: Egocentric future localization. In: CVPR (2016)

    Google Scholar 

  56. Straub, J., et al.: The Replica dataset: a digital replica of indoor spaces. arXiv preprint arXiv:1906.05797 (2019)

  57. Sulaiman, M.Z., Aziz, M.N.A., Bakar, M.H.A., Halili, N.A., Azuddin, M.A.: Matterport: virtual tour as a new marketing approach in real estate business during pandemic COVID-19. In: Proceedings of the International Conference of Innovation in Media and Visual Design (IMDES 2020). Atlantis Press, pp. 221–226 (2020)

    Google Scholar 

  58. Wang, D.Z., Posner, I.: Voting for voting in online point cloud object detection. In: TSS (2015)

    Google Scholar 

  59. Wang, X., Girshick, R., Gupta, A., He, K.: Non-local neural networks. In: CVPR (2018)

    Google Scholar 

  60. Wu, W., Qi, Z., Fuxin, L.: PointConv: deep convolutional networks on 3D point clouds. In: CVPR (2019)

    Google Scholar 

  61. Wu, W., Wang, Z.Y., Li, Z., Liu, W., Fuxin, L.: PointPWC-Net: cost volume on point clouds for (self-)supervised scene flow estimation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12350, pp. 88–107. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58558-7_6

    Chapter  Google Scholar 

  62. Wu, Y., Kirillov, A., Massa, F., Lo, W.Y., Girshick, R.: Detectron2. https://github.com/facebookresearch/detectron2 (2019)

  63. Yang, B., Luo, W., Urtasun, R.: PIXOR: real-time 3D object detection from point clouds. In: CVPR (2018)

    Google Scholar 

  64. Zhang, M., Teck Ma, K., Hwee Lim, J., Zhao, Q., Feng, J.: Deep future gaze: gaze anticipation on egocentric videos using adversarial networks. In: CVPR (2017)

    Google Scholar 

  65. Zhang, S., Zhang, Y., Ma, Q., Black, M.J., Tang, S.: PLACE: Proximity learning of articulation and contact in 3D environments. In: 3DV (2020)

    Google Scholar 

  66. Zhang, Y., Hassan, M., Neumann, H., Black, M.J., Tang, S.: Generating 3D people in scenes without people. In: CVPR (2020)

    Google Scholar 

  67. Zhou, Y., Ni, B., Hong, R., Yang, X., Tian, Q.: Cascaded interactional targeting network for egocentric video analysis. In: CVPR (2016)

    Google Scholar 

  68. Zhou, Y., Tuzel, O.: VoxelNet: end-to-end learning for point cloud based 3D object detection. In: CVPR (2018)

    Google Scholar 

Download references

Acknowledgments

Portions of this project were supported in part by a gift from Facebook.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miao Liu .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 1330 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, M. et al. (2022). Egocentric Activity Recognition and Localization on a 3D Map. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13673. Springer, Cham. https://doi.org/10.1007/978-3-031-19778-9_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19778-9_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19777-2

  • Online ISBN: 978-3-031-19778-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics