Skip to main content

Privacy-Preserving Action Recognition via Motion Difference Quantization

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Abstract

The widespread use of smart computer vision systems in our personal spaces has led to an increased consciousness about the privacy and security risks that these systems pose. On the one hand, we want these systems to assist in our daily lives by understanding our surroundings, but on the other hand, we want them to do so without capturing any sensitive information. Towards this direction, this paper proposes a simple, yet robust privacy-preserving encoder called BDQ for the task of privacy-preserving human action recognition that is composed of three modules: , , and . First, the input scene is passed to the Blur module to smoothen the edges. This is followed by the Difference module to apply a pixel-wise intensity subtraction between consecutive frames to highlight motion features and suppress high-level privacy attributes. Finally, the Quantization module is applied to the motion difference frames to remove the low-level privacy attributes. The BDQ parameters are optimized in an end-to-end fashion via adversarial training such that it learns to allow action recognition attributes while inhibiting privacy attributes. Our experiments on three benchmark datasets show that the proposed encoder design can achieve state-of-the-art trade-off when compared with previous works. Furthermore, we show that the trade-off achieved is at par with the DVS sensor-based event cameras. Code available at: https://github.com/suakaw/BDQ_PrivacyAR

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. www.samsung.com/au/smart-home/smartthings-vision-u999/GP-U999GTEEAAC/

  2. Agrawal, P., Narayanan, P.: Person de-identification in videos. IEEE Trans. Circ. Syst. Video Technol. 21(3), 299–310 (2011)

    Article  Google Scholar 

  3. Asif, U., et al.: Privacy preserving human fall detection using video data. In: Machine Learning for Health Workshop, pp. 39–51. PMLR (2020)

    Google Scholar 

  4. Benitez-Garcia, G., Olivares-Mercado, J., Sanchez-Perez, G., Yanai, K.: Ipn hand: a video dataset and benchmark for real-time continuous hand gesture recognition. In: 2020 25th International Conference on Pattern Recognition (ICPR), pp. 4340–4347. IEEE (2021)

    Google Scholar 

  5. Brkic, K., Sikiric, I., Hrkac, T., Kalafatic, Z.: I know that person: generative full body and face de-identification of people in images. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 1319–1328. IEEE (2017)

    Google Scholar 

  6. Canh, T.N., Nagahara, H.: Deep compressive sensing for visual privacy protection in flatcam imaging. In: 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW), pp. 3978–3986. IEEE (2019)

    Google Scholar 

  7. Chen, D., Chang, Y., Yan, R., Yang, J.: Tools for protecting the privacy of specific individuals in video. EURASIP J. Adv. Signal Process. 2007, 1–9 (2007)

    Article  MATH  Google Scholar 

  8. Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-Net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_49

    Chapter  Google Scholar 

  9. Dai, J., Wu, J., Saghafi, B., Konrad, J., Ishwar, P.: Towards privacy-preserving activity recognition using extremely low temporal and spatial resolution cameras. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 68–76 (2015)

    Google Scholar 

  10. Dave, I.R., Chen, C., Shah, M.: Spact: self-supervised privacy preservation for action recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 20164–20173 (2022)

    Google Scholar 

  11. Gehrig, D., Gehrig, M., Hidalgo-Carrió, J., Scaramuzza, D.: Video to events: recycling video datasets for event cameras. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3586–3595 (2020)

    Google Scholar 

  12. Gochoo, M., Tan, T.H., Alnajjar, F., Hsieh, J.W., Chen, P.Y.: Lownet: privacy preserved ultra-low resolution posture image classification. In: 2020 IEEE International Conference on Image Processing (ICIP), pp. 663–667. IEEE (2020)

    Google Scholar 

  13. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  14. Hinojosa, C., Niebles, J.C., Arguello, H.: Learning privacy-preserving optics for human pose estimation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 2573–2582 (2021)

    Google Scholar 

  15. Howard, A., et al.: Searching for mobilenetv3. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1314–1324 (2019)

    Google Scholar 

  16. Huang, C., Kairouz, P., Sankar, L.: Generative adversarial privacy: a data-driven approach to information-theoretic privacy. In: 2018 52nd Asilomar Conference on Signals, Systems, and Computers, pp. 2162–2166. IEEE (2018)

    Google Scholar 

  17. Jiang, B., Wang, M., Gan, W., Wu, W., Yan, J.: Stm: spatiotemporal and motion encoding for action recognition. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 2000–2009 (2019)

    Google Scholar 

  18. Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and super-resolution. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 694–711. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_43

    Chapter  Google Scholar 

  19. Li, Y., Ji, B., Shi, X., Zhang, J., Kang, B., Wang, L.: Tea: temporal excitation and aggregation for action recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 909–918 (2020)

    Google Scholar 

  20. Liu, Z., et al.: Teinet: towards an efficient architecture for video recognition. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 11669–11676 (2020)

    Google Scholar 

  21. Mirjalili, V., Raschka, S., Ross, A.: Flowsan: privacy-enhancing semi-adversarial networks to confound arbitrary face-based gender classifiers. IEEE Access 7, 99735–99745 (2019)

    Article  Google Scholar 

  22. Orekondy, T., Schiele, B., Fritz, M.: Towards a visual privacy advisor: understanding and predicting privacy risks in images. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3686–3695 (2017)

    Google Scholar 

  23. Padilla-López, J.R., Chaaraoui, A.A., Flórez-Revuelta, F.: Visual privacy protection methods: a survey. Expert Syst. Appl. 42(9), 4177–4195 (2015)

    Article  Google Scholar 

  24. Pittaluga, F., Koppal, S., Chakrabarti, A.: Learning privacy preserving encodings through adversarial training. In: 2019 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 791–799. IEEE (2019)

    Google Scholar 

  25. Pittaluga, F., Koppal, S.J.: Pre-capture privacy for small vision sensors. IEEE Trans. Pattern Anal. Mach. Intell. 39(11), 2215–2226 (2016)

    Article  Google Scholar 

  26. Raval, N., Machanavajjhala, A., Cox, L.P.: Protecting visual secrets using adversarial nets. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 1329–1332. IEEE (2017)

    Google Scholar 

  27. Ren, Z., Lee, Y.J., Ryoo, M.S.: Learning to anonymize faces for privacy preserving action detection. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 620–636 (2018)

    Google Scholar 

  28. Roy, P.C., Boddeti, V.N.: Mitigating information leakage in image representations: a maximum entropy approach. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2586–2594 (2019)

    Google Scholar 

  29. Ryoo, M., Kim, K., Yang, H.: Extreme low resolution activity recognition with multi-siamese embedding learning. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32 (2018)

    Google Scholar 

  30. Ryoo, M.S., Rothrock, B., Fleming, C., Yang, H.J.: Privacy-preserving human activity recognition from extreme low resolution. In: Thirty-First AAAI Conference on Artificial Intelligence (2017)

    Google Scholar 

  31. Schuldt, C., Laptev, I., Caputo, B.: Recognizing human actions: a local svm approach. In: Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004, vol. 3, pp. 32–36. IEEE (2004)

    Google Scholar 

  32. Srivastav, V., Gangi, A., Padoy, N.: Human pose estimation on privacy-preserving low-resolution depth images. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11768, pp. 583–591. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32254-0_65

    Chapter  Google Scholar 

  33. Tan, J., et al.: Canopic: pre-digital privacy-enhancing encodings for computer vision. In: 2020 IEEE International Conference on Multimedia and Expo (ICME), pp. 1–6. IEEE (2020)

    Google Scholar 

  34. Wang, L., Tong, Z., Ji, B., Wu, G.: Tdn: temporal difference networks for efficient action recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1895–1904 (2021)

    Google Scholar 

  35. Wang, Z.W., et al.: Privacy-preserving action recognition using coded aperture videos. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (2019)

    Google Scholar 

  36. Wu, Z., Wang, H., Wang, Z., Jin, H., Wang, Z.: Privacy-preserving deep action recognition: an adversarial learning framework and a new dataset. IEEE Trans. Pattern Anal. Mach. Intell. (2020)

    Google Scholar 

  37. Wu, Z., Wang, Z., Wang, Z., Jin, H.: Towards privacy-preserving visual recognition via adversarial training: a pilot study. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 606–624 (2018)

    Google Scholar 

  38. Yang, J., et al.: Quantization networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7308–7316 (2019)

    Google Scholar 

  39. Yun, K., Honorio, J., Chattopadhyay, D., Berg, T.L., Samaras, D.: Two-person interaction detection using body-pose features and multiple instance learning. In: 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, pp. 28–35. IEEE (2012)

    Google Scholar 

Download references

Acknowledgement

This work was supported by JSPS KAKENHI Grant Number JP20K20628.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudhakar Kumawat .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 2269 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kumawat, S., Nagahara, H. (2022). Privacy-Preserving Action Recognition via Motion Difference Quantization. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13673. Springer, Cham. https://doi.org/10.1007/978-3-031-19778-9_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19778-9_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19777-2

  • Online ISBN: 978-3-031-19778-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics