Skip to main content

Unsupervised High-Fidelity Facial Texture Generation and Reconstruction

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13673))

Included in the following conference series:

Abstract

Many methods have been proposed over the years to tackle the task of facial 3D geometry and texture recovery from a single image. Such methods often fail to provide high-fidelity texture without relying on 3D facial scans during training. In contrast, the complementary task of 3D facial generation has not received as much attention. As opposed to the 2D texture domain, where GANs have proven to produce highly realistic facial images, the more challenging 3D domain has not yet caught up to the same levels of realism and diversity. In this paper, we propose a novel unified pipeline for both tasks, generation of texture with coupled geometry, and reconstruction of high-fidelity texture. Our texture model is learned, in an unsupervised fashion, from natural images as opposed to scanned textures. To our knowledge, this is the first such unified framework independent of scanned textures. Our novel training pipeline incorporates a pre-trained 2D facial generator coupled with a deep feature manipulation methodology. By applying our two-step geometry fitting process, we seamlessly integrate our modeled textures into synthetically generated background images forming a realistic composition of our textured model with background, hair, teeth, and body. This enables us to apply transfer learning from the 2D image domain, thus leveraging the high-quality results obtained in this domain. We provide a comprehensive study on several recent methods comparing our model in generation and reconstruction tasks. As the extensive qualitative, as well as quantitative analysis, demonstrate, we achieve state-of-the-art results for both tasks.

R. Slossberg and I. Jubran—These authors contributed equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Link for our open-source code on Github: https://github.com/ronslos/Unsupervised-High-Fidelity-Facial-Texture-Generation-and-Reconstruction.

References

  1. Blanz, V., Vetter, T.: A morphable model for the synthesis of 3d faces. In: Proceedings of the 26th Annual Conference on Computer Graphics and Interactive Techniques, pp. 187–194 (1999)

    Google Scholar 

  2. Booth, J., Roussos, A., Ponniah, A., Dunaway, D., Zafeiriou, S.: Large scale 3d morphable models. Int. J. Comput. Vision 126(2), 233–254 (2018)

    Article  MathSciNet  Google Scholar 

  3. Booth, J., Roussos, A., Zafeiriou, S., Ponniah, A., Dunaway, D.: A 3d morphable model learnt from 10,000 faces. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5543–5552 (2016)

    Google Scholar 

  4. Chen, A., Chen, Z., Zhang, G., Mitchell, K., Yu, J.: Photo-realistic facial details synthesis from single image. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9429–9439 (2019)

    Google Scholar 

  5. Chen, Y.C., et al.: Facelet-bank for fast portrait manipulation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3541–3549 (2018)

    Google Scholar 

  6. Deng, J., Cheng, S., Xue, N., Zhou, Y., Zafeiriou, S.: Uv-gan: adversarial facial uv map completion for pose-invariant face recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7093–7102 (2018)

    Google Scholar 

  7. Deng, Y., Yang, J., Xu, S., Chen, D., Jia, Y., Tong, X.: Accurate 3d face reconstruction with weakly-supervised learning: from single image to image set. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 0 (2019)

    Google Scholar 

  8. Dou, P., Shah, S.K., Kakadiaris, I.A.: End-to-end 3d face reconstruction with deep neural networks. In: proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5908–5917 (2017)

    Google Scholar 

  9. Egger, B., Smith, W.A., Tewari, A., Wuhrer, S., Zollhoefer, M., Beeler, T., Bernard, F., Bolkart, T., Kortylewski, A., Romdhani, S., Theobalt, C., Blanz, V., Vetter, T.: 3d morphable face models-past, present, and future. ACM Trans. Graph. (TOG) 39(5), 1–38 (2020)

    Article  Google Scholar 

  10. Floater, M.S.: Parametrization and smooth approximation of surface triangulations. Comput. Aided Geometric Design 14(3), 231–250 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gecer, B., Deng, J., Zafeiriou, S.: Ostec: one-shot texture completion. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7628–7638 (2021)

    Google Scholar 

  12. Gecer, B., Ploumpis, S., Kotsia, I., Zafeiriou, S.: Ganfit: generative adversarial network fitting for high fidelity 3d face reconstruction. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1155–1164 (2019)

    Google Scholar 

  13. Gecer, B., Ploumpis, S., Kotsia, I., Zafeiriou, S.: Fast-ganfit: generative adversarial network for high fidelity 3d face reconstruction. arXiv preprint arXiv:2105.07474 (2021)

  14. Genova, K., Cole, F., Maschinot, A., Sarna, A., Vlasic, D., Freeman, W.T.: Unsupervised training for 3d morphable model regression. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8377–8386 (2018)

    Google Scholar 

  15. Guo, J., Zhu, X., Yang, Y., Yang, F., Lei, Z., Li, S.Z.: Towards fast, accurate and stable 3D dense face alignment. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12364, pp. 152–168. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58529-7_10

    Chapter  Google Scholar 

  16. Jolliffe, I.T.: Principal components in regression analysis. In: Principal component analysis, pp. 129–155. Springer, New York (1986). https://doi.org/10.1007/978-1-4757-1904-8_8

  17. Karras, T., Aittala, M., Hellsten, J., Laine, S., Lehtinen, J., Aila, T.: Training generative adversarial networks with limited data. In: Proceedings of the NeurIPS (2020)

    Google Scholar 

  18. Karras, T., Laine, S., Aila, T.: A style-based generator architecture for generative adversarial networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4401–4410 (2019)

    Google Scholar 

  19. Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J., Aila, T.: Analyzing and improving the image quality of stylegan. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8110–8119 (2020)

    Google Scholar 

  20. Kartynnik, Y., Ablavatski, A., Grishchenko, I., Grundmann, M.: Real-time facial surface geometry from monocular video on mobile gpus. In: Proceedings of CVPR Workshops (2019)

    Google Scholar 

  21. Kim, J., Yang, J., Tong, X.: Learning high-fidelity face texture completion without complete face texture (2021)

    Google Scholar 

  22. Li, T., Bolkart, T., Black, M.J., Li, H., Romero, J.: Learning a model of facial shape and expression from 4D scans. ACM Trans. Graph. (Proc. SIGGRAPH Asia) 36(6), 194:1–194:17 (2017). https://doi.org/10.1145/3130800.3130813

  23. Lin, J., Yuan, Y., Shao, T., Zhou, K.: Towards high-fidelity 3d face reconstruction from in-the-wild images using graph convolutional networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5891–5900 (2020)

    Google Scholar 

  24. Liu, Z., Luo, P., Wang, X., Tang, X.: Deep learning face attributes in the wild. In: Proceedings of International Conference on Computer Vision (ICCV), December 2015

    Google Scholar 

  25. Marriott, R.T., Romdhani, S., Chen, L.: A 3d gan for improved large-pose facial recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 13445–13455 (2021)

    Google Scholar 

  26. Models, P.: The weights for all our pretrained models. (2021), the authors commit to publish upon acceptance of this paper or reviewer request

    Google Scholar 

  27. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: an imperative style, high-performance deep learning library. Adv. Neural. Inf. Process. Syst. 32, 8026–8037 (2019)

    Google Scholar 

  28. Ramamoorthi, R., Hanrahan, P.: An efficient representation for irradiance environment maps. In: Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, pp. 497–500 (2001)

    Google Scholar 

  29. Ramamoorthi, R., Hanrahan, P.: A signal-processing framework for inverse rendering. In: Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, pp. 117–128 (2001)

    Google Scholar 

  30. Ravi, N., Reizenstein, J., Novotny, D., Gordon, T., Lo, W.Y., Johnson, J., Gkioxari, G.: Accelerating 3d deep learning with pytorch3d. arXiv preprint arXiv:2007.08501 (2020)

  31. Richardson, E., Sela, M., Kimmel, R.: 3d face reconstruction by learning from synthetic data. In: 2016 Fourth International Conference on 3D Vision (3DV), pp. 460–469. IEEE (2016)

    Google Scholar 

  32. Richardson, E., Sela, M., Or-El, R., Kimmel, R.: Learning detailed face reconstruction from a single image. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp. 1259–1268 (2017)

    Google Scholar 

  33. Sela, M., Richardson, E., Kimmel, R.: Unrestricted facial geometry reconstruction using image-to-image translation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1576–1585 (2017)

    Google Scholar 

  34. Shamai, G., Slossberg, R., Kimmel, R.: Synthesizing facial photometries and corresponding geometries using generative adversarial networks. ACM Trans. Multimed. Comput. Commun. Appl. (TOMM) 15(3s), 1–24 (2019)

    Google Scholar 

  35. Slossberg, R., Shamai, G., Kimmel, R.: High quality facial surface and texture synthesis via generative adversarial networks. In: Leal-Taixé, L., Roth, S. (eds.) ECCV 2018. LNCS, vol. 11131, pp. 498–513. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11015-4_36

    Chapter  Google Scholar 

  36. Tewari, A., et al.: Fml: face model learning from videos. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 10812–10822 (2019)

    Google Scholar 

  37. Tewari, A., et al.: Stylerig: rigging stylegan for 3d control over portrait images. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6142–6151 (2020)

    Google Scholar 

  38. Tewari, A., et al.: Self-supervised multi-level face model learning for monocular reconstruction at over 250 hz. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)

    Google Scholar 

  39. Tewari, A., Zollhofer, M., Kim, H., Garrido, P., Bernard, F., Perez, P., Theobalt, C.: Mofa: model-based deep convolutional face autoencoder for unsupervised monocular reconstruction. In: Proceedings of the IEEE International Conference on Computer Vision Workshops, pp. 1274–1283 (2017)

    Google Scholar 

  40. Tolosana, R., Vera-Rodriguez, R., Fierrez, J., Morales, A., Ortega-Garcia, J.: Deepfakes and beyond: A survey of face manipulation and fake detection. Information Fusion 64, 131–148 (2020)

    Article  Google Scholar 

  41. Tran, A.T., Hassner, T., Masi, I., Paz, E., Nirkin, Y., Medioni, G.: Extreme 3d face reconstruction: Seeing through occlusions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3935–3944 (2018)

    Google Scholar 

  42. Tran, L., Liu, X.: Nonlinear 3d face morphable model. In: In: Proceeding of IEEE Computer Vision and Pattern Recognition. Salt Lake City, UT, June 2018

    Google Scholar 

  43. Wu, X., He, R., Sun, Z., Tan, T.: A light cnn for deep face representation with noisy labels. IEEE Trans. Inf. Forensics Secur. 13(11), 2884–2896 (2018)

    Article  Google Scholar 

  44. Yenamandra, T., Tewari, A., Bernard, F., Seidel, H.P., Elgharib, M., Cremers, D., Theobalt, C.: i3dmm: Deep implicit 3d morphable model of human heads. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. pp. 12803–12813 (2021)

    Google Scholar 

  45. Zhu, X., Lei, Z., Liu, X., Shi, H., Li, S.Z.: Face alignment across large poses: a 3d solution. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 146–155 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ron Slossberg .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 20046 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Slossberg, R., Jubran, I., Kimmel, R. (2022). Unsupervised High-Fidelity Facial Texture Generation and Reconstruction. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13673. Springer, Cham. https://doi.org/10.1007/978-3-031-19778-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19778-9_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19777-2

  • Online ISBN: 978-3-031-19778-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics