Abstract
Talking head synthesis is an emerging technology with wide applications in film dubbing, virtual avatars and online education. Recent NeRF-based methods generate more natural talking videos, as they better capture the 3D structural information of faces. However, a specific model needs to be trained for each identity with a large dataset. In this paper, we propose Dynamic Facial Radiance Fields (DFRF) for few-shot talking head synthesis, which can rapidly generalize to an unseen identity with few training data. Different from the existing NeRF-based methods which directly encode the 3D geometry and appearance of a specific person into the network, our DFRF conditions face radiance field on 2D appearance images to learn the face prior. Thus the facial radiance field can be flexibly adjusted to the new identity with few reference images. Additionally, for better modeling of the facial deformations, we propose a differentiable face warping module conditioned on audio signals to deform all reference images to the query space. Extensive experiments show that with only tens of seconds of training clip available, our proposed DFRF can synthesize natural and high-quality audio-driven talking head videos for novel identities with only 40k iterations. We highly recommend readers view our supplementary video for intuitive comparisons. Code is available in https://sstzal.github.io/DFRF/.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Andrew, A.M.: Multiple view geometry in computer vision. Kybernetes (2001)
Blanz, V., Vetter, T.: A morphable model for the synthesis of 3D faces. In: Annual Conference on Computer Graphics and Interactive Techniques (1999)
Chan, E.R., Monteiro, M., Kellnhofer, P., Wu, J., Wetzstein, G.: pi-GAN: periodic implicit generative adversarial networks for 3D-aware image synthesis. In: CVPR (2021)
Chen, L., et al.: Talking-head generation with rhythmic head motion. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12354, pp. 35–51. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58545-7_3
Chen, L., Maddox, R.K., Duan, Z., Xu, C.: Hierarchical cross-modal talking face generation with dynamic pixel-wise loss. In: CVPR (2019)
Christos Doukas, M., Zafeiriou, S., Sharmanska, V.: HeadGAN: video-and-audio-driven talking head synthesis. arXiv (2020)
Chung, J.S., Jamaludin, A., Zisserman, A.: You said that? In: BMVC (2017)
Chung, J.S., Zisserman, A.: Out of time: automated lip sync in the wild. In: ACCV (2016)
Cudeiro, D., Bolkart, T., Laidlaw, C., Ranjan, A., Black, M.J.: Capture, learning, and synthesis of 3D speaking styles. In: CVPR (2019)
Curless, B., Levoy, M.: A volumetric method for building complex models from range images. In: Annual Conference on Computer Graphics and Interactive Techniques (1996)
Das, D., Biswas, S., Sinha, S., Bhowmick, B.: Speech-driven facial animation using cascaded GANs for learning of motion and texture. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12375, pp. 408–424. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58577-8_25
Eskimez, S.E., Zhang, Y., Duan, Z.: Speech driven talking face generation from a single image and an emotion condition. TMM 24, 3480–3490 (2021)
Fried, O., et al.: Text-based editing of talking-head video. TOG 38, 1–14 (2019)
Gafni, G., Thies, J., Zollhofer, M., Nießner, M.: Dynamic neural radiance fields for monocular 4D facial avatar reconstruction. In: CVPR (2021)
Gao, C., Shih, Y., Lai, W.S., Liang, C.K., Huang, J.B.: Portrait neural radiance fields from a single image. arXiv (2020)
Gu, K., Zhou, Y., Huang, T.: FLNet: landmark driven fetching and learning network for faithful talking facial animation synthesis. In: AAAI (2020)
Guo, Y., Chen, K., Liang, S., Liu, Y., Bao, H., Zhang, J.: AD-NeRF: audio driven neural radiance fields for talking head synthesis. In: ECCV (2021)
Hannun, A., et al.: Deep speech: Scaling up end-to-end speech recognition. arXiv (2014)
Jaderberg, M., Simonyan, K., Zisserman, A., et al.: Spatial transformer networks. In: NeurIPS (2015)
Ji, X., et al.: Audio-driven emotional video portraits. In: CVPR (2021)
Karras, T., Aila, T., Laine, S., Herva, A., Lehtinen, J.: Audio-driven facial animation by joint end-to-end learning of pose and emotion. TOG 36, 1–12 (2017)
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv (2014)
Kumar, N., Goel, S., Narang, A., Hasan, M.: Robust one shot audio to video generation. In: CVPRW (2020)
Locatello, F., et al.: Object-centric learning with slot attention. arXiv (2020)
Lu, Y., Chai, J., Cao, X.: Live speech portraits: real-time photorealistic talking-head animation. TOG 40, 1–17 (2021)
Meshry, M., Suri, S., Davis, L.S., Shrivastava, A.: Learned spatial representations for few-shot talking-head synthesis. arXiv (2021)
Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng, R.: NeRF: representing scenes as neural radiance fields for view synthesis. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 405–421. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_24
Niemeyer, M., Mescheder, L., Oechsle, M., Geiger, A.: Differentiable volumetric rendering: learning implicit 3D representations without 3d supervision. In: CVPR (2020)
Park, K., et al.: Nerfies: deformable neural radiance fields. In: ICCV (2021)
Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning library. In: NeurIPS (2019)
Prajwal, K., Mukhopadhyay, R., Namboodiri, V.P., Jawahar, C.: A lip sync expert is all you need for speech to lip generation in the wild. In: ACM MM (2020)
Pumarola, A., Corona, E., Pons-Moll, G., Moreno-Noguer, F.: D-NeRF: neural radiance fields for dynamic scenes. In: CVPR (2021)
Seitz, S.M., Dyer, C.R.: Photorealistic scene reconstruction by voxel coloring. IJCV 35, 151–173 (1999). https://doi.org/10.1023/A:1008176507526
Shang, J., Shen, T., Li, S., Zhou, L., Zhen, M., Fang, T., Quan, L.: Self-supervised monocular 3D face reconstruction by occlusion-aware multi-view geometry consistency. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12360, pp. 53–70. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58555-6_4
Sitzmann, V., Zollhöfer, M., Wetzstein, G.: Scene representation networks: Continuous 3D-structure-aware neural scene representations. arXiv (2019)
Song, L., Wu, W., Qian, C., He, R., Loy, C.C.: Everybody’s talkin’: let me talk as you want. arXiv (2020)
Suwajanakorn, S., Seitz, S.M., Kemelmacher-Shlizerman, I.: Synthesizing Obama: learning lip sync from audio. TOG 36, 1–13 (2017)
Tewari, A., et al.: State of the art on neural rendering. In: Computer Graphics Forum (2020)
Thies, J., Elgharib, M., Tewari, A., Theobalt, C., Nießner, M.: Neural voice puppetry: audio-driven facial reenactment. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12361, pp. 716–731. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58517-4_42
Thies, J., Zollhofer, M., Stamminger, M., Theobalt, C., Nießner, M.: Face2Face: real-time face capture and reenactment of RGB videos. In: CVPR (2016)
Tretschk, E., Tewari, A., Golyanik, V., Zollhofer, M., Lassner, C., Theobalt, C.: Non-rigid neural radiance fields: reconstruction and novel view synthesis of a dynamic scene from monocular video. In: ICCV (2021)
Trevithick, A., Yang, B.: GRF: learning a general radiance field for 3D representation and rendering. In: ICCV (2021)
Wang, Q., et al.: IBRNet: learning multi-view image-based rendering. In: CVPR (2021)
Wang, S., Li, L., Ding, Y., Fan, C., Yu, X.: Audio2Head: audio-driven one-shot talking-head generation with natural head motion. arXiv (2021)
Wang, T.C., Mallya, A., Liu, M.Y.: One-shot free-view neural talking-head synthesis for video conferencing. In: CVPR (2021)
Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. TIP 13, 600–612 (2004)
Yao, S., Zhong, R., Yan, Y., Zhai, G., Yang, X.: DFA-NeRF: personalized talking head generation via disentangled face attributes neural rendering. arXiv (2022)
Yenamandra, T., et al.: i3DMM: deep implicit 3D morphable model of human heads. In: CVPR (2021)
Yi, R., Ye, Z., Zhang, J., Bao, H., Liu, Y.J.: Audio-driven talking face video generation with learning-based personalized head pose. arXiv (2020)
Yu, A., Ye, V., Tancik, M., Kanazawa, A.: pixelNeRF: neural radiance fields from one or few images. In: CVPR (2021)
Zakharov, E., Shysheya, A., Burkov, E., Lempitsky, V.: Few-shot adversarial learning of realistic neural talking head models. In: ICCV (2019)
Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable effectiveness of deep features as a perceptual metric. In: CVPR (2018)
Zhang, X., Wu, X., Zhai, X., Ben, X., Tu, C.: DAVD-Net: deep audio-aided video decompression of talking heads. In: CVPR (2020)
Zhou, H., Liu, Y., Liu, Z., Luo, P., Wang, X.: Talking face generation by adversarially disentangled audio-visual representation. In: AAAI (2019)
Zhou, Y., Han, X., Shechtman, E., Echevarria, J., Kalogerakis, E., Li, D.: MakeltTalk: speaker-aware talking-head animation. TOG 39, 1–15 (2020)
Zhu, H., Huang, H., Li, Y., Zheng, A., He, R.: Arbitrary talking face generation via attentional audio-visual coherence learning. In: IJCAI (2020)
Zollhöfer, M., et al.: State of the art on monocular 3D face reconstruction, tracking, and applications. In: Computer Graphics Forum (2018)
Acknowledgement
This work was supported in part by the National Key Research and Development Program of China under Grant 2017YFA0700802, in part by the National Natural Science Foundation of China under Grant 62125603 and Grant U1813218, in part by a grant from the Beijing Academy of Artificial Intelligence (BAAI).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Shen, S., Li, W., Zhu, Z., Duan, Y., Zhou, J., Lu, J. (2022). Learning Dynamic Facial Radiance Fields for Few-Shot Talking Head Synthesis. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13672. Springer, Cham. https://doi.org/10.1007/978-3-031-19775-8_39
Download citation
DOI: https://doi.org/10.1007/978-3-031-19775-8_39
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-19774-1
Online ISBN: 978-3-031-19775-8
eBook Packages: Computer ScienceComputer Science (R0)