Skip to main content

Learning Dynamic Facial Radiance Fields for Few-Shot Talking Head Synthesis

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13672))

Included in the following conference series:

Abstract

Talking head synthesis is an emerging technology with wide applications in film dubbing, virtual avatars and online education. Recent NeRF-based methods generate more natural talking videos, as they better capture the 3D structural information of faces. However, a specific model needs to be trained for each identity with a large dataset. In this paper, we propose Dynamic Facial Radiance Fields (DFRF) for few-shot talking head synthesis, which can rapidly generalize to an unseen identity with few training data. Different from the existing NeRF-based methods which directly encode the 3D geometry and appearance of a specific person into the network, our DFRF conditions face radiance field on 2D appearance images to learn the face prior. Thus the facial radiance field can be flexibly adjusted to the new identity with few reference images. Additionally, for better modeling of the facial deformations, we propose a differentiable face warping module conditioned on audio signals to deform all reference images to the query space. Extensive experiments show that with only tens of seconds of training clip available, our proposed DFRF can synthesize natural and high-quality audio-driven talking head videos for novel identities with only 40k iterations. We highly recommend readers view our supplementary video for intuitive comparisons. Code is available in https://sstzal.github.io/DFRF/.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Andrew, A.M.: Multiple view geometry in computer vision. Kybernetes (2001)

    Google Scholar 

  2. Blanz, V., Vetter, T.: A morphable model for the synthesis of 3D faces. In: Annual Conference on Computer Graphics and Interactive Techniques (1999)

    Google Scholar 

  3. Chan, E.R., Monteiro, M., Kellnhofer, P., Wu, J., Wetzstein, G.: pi-GAN: periodic implicit generative adversarial networks for 3D-aware image synthesis. In: CVPR (2021)

    Google Scholar 

  4. Chen, L., et al.: Talking-head generation with rhythmic head motion. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12354, pp. 35–51. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58545-7_3

    Chapter  Google Scholar 

  5. Chen, L., Maddox, R.K., Duan, Z., Xu, C.: Hierarchical cross-modal talking face generation with dynamic pixel-wise loss. In: CVPR (2019)

    Google Scholar 

  6. Christos Doukas, M., Zafeiriou, S., Sharmanska, V.: HeadGAN: video-and-audio-driven talking head synthesis. arXiv (2020)

    Google Scholar 

  7. Chung, J.S., Jamaludin, A., Zisserman, A.: You said that? In: BMVC (2017)

    Google Scholar 

  8. Chung, J.S., Zisserman, A.: Out of time: automated lip sync in the wild. In: ACCV (2016)

    Google Scholar 

  9. Cudeiro, D., Bolkart, T., Laidlaw, C., Ranjan, A., Black, M.J.: Capture, learning, and synthesis of 3D speaking styles. In: CVPR (2019)

    Google Scholar 

  10. Curless, B., Levoy, M.: A volumetric method for building complex models from range images. In: Annual Conference on Computer Graphics and Interactive Techniques (1996)

    Google Scholar 

  11. Das, D., Biswas, S., Sinha, S., Bhowmick, B.: Speech-driven facial animation using cascaded GANs for learning of motion and texture. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12375, pp. 408–424. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58577-8_25

    Chapter  Google Scholar 

  12. Eskimez, S.E., Zhang, Y., Duan, Z.: Speech driven talking face generation from a single image and an emotion condition. TMM 24, 3480–3490 (2021)

    Google Scholar 

  13. Fried, O., et al.: Text-based editing of talking-head video. TOG 38, 1–14 (2019)

    Article  Google Scholar 

  14. Gafni, G., Thies, J., Zollhofer, M., Nießner, M.: Dynamic neural radiance fields for monocular 4D facial avatar reconstruction. In: CVPR (2021)

    Google Scholar 

  15. Gao, C., Shih, Y., Lai, W.S., Liang, C.K., Huang, J.B.: Portrait neural radiance fields from a single image. arXiv (2020)

    Google Scholar 

  16. Gu, K., Zhou, Y., Huang, T.: FLNet: landmark driven fetching and learning network for faithful talking facial animation synthesis. In: AAAI (2020)

    Google Scholar 

  17. Guo, Y., Chen, K., Liang, S., Liu, Y., Bao, H., Zhang, J.: AD-NeRF: audio driven neural radiance fields for talking head synthesis. In: ECCV (2021)

    Google Scholar 

  18. Hannun, A., et al.: Deep speech: Scaling up end-to-end speech recognition. arXiv (2014)

    Google Scholar 

  19. Jaderberg, M., Simonyan, K., Zisserman, A., et al.: Spatial transformer networks. In: NeurIPS (2015)

    Google Scholar 

  20. Ji, X., et al.: Audio-driven emotional video portraits. In: CVPR (2021)

    Google Scholar 

  21. Karras, T., Aila, T., Laine, S., Herva, A., Lehtinen, J.: Audio-driven facial animation by joint end-to-end learning of pose and emotion. TOG 36, 1–12 (2017)

    Article  Google Scholar 

  22. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv (2014)

    Google Scholar 

  23. Kumar, N., Goel, S., Narang, A., Hasan, M.: Robust one shot audio to video generation. In: CVPRW (2020)

    Google Scholar 

  24. Locatello, F., et al.: Object-centric learning with slot attention. arXiv (2020)

    Google Scholar 

  25. Lu, Y., Chai, J., Cao, X.: Live speech portraits: real-time photorealistic talking-head animation. TOG 40, 1–17 (2021)

    Article  Google Scholar 

  26. Meshry, M., Suri, S., Davis, L.S., Shrivastava, A.: Learned spatial representations for few-shot talking-head synthesis. arXiv (2021)

    Google Scholar 

  27. Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng, R.: NeRF: representing scenes as neural radiance fields for view synthesis. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 405–421. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_24

    Chapter  Google Scholar 

  28. Niemeyer, M., Mescheder, L., Oechsle, M., Geiger, A.: Differentiable volumetric rendering: learning implicit 3D representations without 3d supervision. In: CVPR (2020)

    Google Scholar 

  29. Park, K., et al.: Nerfies: deformable neural radiance fields. In: ICCV (2021)

    Google Scholar 

  30. Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning library. In: NeurIPS (2019)

    Google Scholar 

  31. Prajwal, K., Mukhopadhyay, R., Namboodiri, V.P., Jawahar, C.: A lip sync expert is all you need for speech to lip generation in the wild. In: ACM MM (2020)

    Google Scholar 

  32. Pumarola, A., Corona, E., Pons-Moll, G., Moreno-Noguer, F.: D-NeRF: neural radiance fields for dynamic scenes. In: CVPR (2021)

    Google Scholar 

  33. Seitz, S.M., Dyer, C.R.: Photorealistic scene reconstruction by voxel coloring. IJCV 35, 151–173 (1999). https://doi.org/10.1023/A:1008176507526

    Article  Google Scholar 

  34. Shang, J., Shen, T., Li, S., Zhou, L., Zhen, M., Fang, T., Quan, L.: Self-supervised monocular 3D face reconstruction by occlusion-aware multi-view geometry consistency. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12360, pp. 53–70. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58555-6_4

    Chapter  Google Scholar 

  35. Sitzmann, V., Zollhöfer, M., Wetzstein, G.: Scene representation networks: Continuous 3D-structure-aware neural scene representations. arXiv (2019)

    Google Scholar 

  36. Song, L., Wu, W., Qian, C., He, R., Loy, C.C.: Everybody’s talkin’: let me talk as you want. arXiv (2020)

    Google Scholar 

  37. Suwajanakorn, S., Seitz, S.M., Kemelmacher-Shlizerman, I.: Synthesizing Obama: learning lip sync from audio. TOG 36, 1–13 (2017)

    Article  Google Scholar 

  38. Tewari, A., et al.: State of the art on neural rendering. In: Computer Graphics Forum (2020)

    Google Scholar 

  39. Thies, J., Elgharib, M., Tewari, A., Theobalt, C., Nießner, M.: Neural voice puppetry: audio-driven facial reenactment. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12361, pp. 716–731. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58517-4_42

    Chapter  Google Scholar 

  40. Thies, J., Zollhofer, M., Stamminger, M., Theobalt, C., Nießner, M.: Face2Face: real-time face capture and reenactment of RGB videos. In: CVPR (2016)

    Google Scholar 

  41. Tretschk, E., Tewari, A., Golyanik, V., Zollhofer, M., Lassner, C., Theobalt, C.: Non-rigid neural radiance fields: reconstruction and novel view synthesis of a dynamic scene from monocular video. In: ICCV (2021)

    Google Scholar 

  42. Trevithick, A., Yang, B.: GRF: learning a general radiance field for 3D representation and rendering. In: ICCV (2021)

    Google Scholar 

  43. Wang, Q., et al.: IBRNet: learning multi-view image-based rendering. In: CVPR (2021)

    Google Scholar 

  44. Wang, S., Li, L., Ding, Y., Fan, C., Yu, X.: Audio2Head: audio-driven one-shot talking-head generation with natural head motion. arXiv (2021)

    Google Scholar 

  45. Wang, T.C., Mallya, A., Liu, M.Y.: One-shot free-view neural talking-head synthesis for video conferencing. In: CVPR (2021)

    Google Scholar 

  46. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. TIP 13, 600–612 (2004)

    Google Scholar 

  47. Yao, S., Zhong, R., Yan, Y., Zhai, G., Yang, X.: DFA-NeRF: personalized talking head generation via disentangled face attributes neural rendering. arXiv (2022)

    Google Scholar 

  48. Yenamandra, T., et al.: i3DMM: deep implicit 3D morphable model of human heads. In: CVPR (2021)

    Google Scholar 

  49. Yi, R., Ye, Z., Zhang, J., Bao, H., Liu, Y.J.: Audio-driven talking face video generation with learning-based personalized head pose. arXiv (2020)

    Google Scholar 

  50. Yu, A., Ye, V., Tancik, M., Kanazawa, A.: pixelNeRF: neural radiance fields from one or few images. In: CVPR (2021)

    Google Scholar 

  51. Zakharov, E., Shysheya, A., Burkov, E., Lempitsky, V.: Few-shot adversarial learning of realistic neural talking head models. In: ICCV (2019)

    Google Scholar 

  52. Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable effectiveness of deep features as a perceptual metric. In: CVPR (2018)

    Google Scholar 

  53. Zhang, X., Wu, X., Zhai, X., Ben, X., Tu, C.: DAVD-Net: deep audio-aided video decompression of talking heads. In: CVPR (2020)

    Google Scholar 

  54. Zhou, H., Liu, Y., Liu, Z., Luo, P., Wang, X.: Talking face generation by adversarially disentangled audio-visual representation. In: AAAI (2019)

    Google Scholar 

  55. Zhou, Y., Han, X., Shechtman, E., Echevarria, J., Kalogerakis, E., Li, D.: MakeltTalk: speaker-aware talking-head animation. TOG 39, 1–15 (2020)

    Google Scholar 

  56. Zhu, H., Huang, H., Li, Y., Zheng, A., He, R.: Arbitrary talking face generation via attentional audio-visual coherence learning. In: IJCAI (2020)

    Google Scholar 

  57. Zollhöfer, M., et al.: State of the art on monocular 3D face reconstruction, tracking, and applications. In: Computer Graphics Forum (2018)

    Google Scholar 

Download references

Acknowledgement

This work was supported in part by the National Key Research and Development Program of China under Grant 2017YFA0700802, in part by the National Natural Science Foundation of China under Grant 62125603 and Grant U1813218, in part by a grant from the Beijing Academy of Artificial Intelligence (BAAI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiwen Lu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shen, S., Li, W., Zhu, Z., Duan, Y., Zhou, J., Lu, J. (2022). Learning Dynamic Facial Radiance Fields for Few-Shot Talking Head Synthesis. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13672. Springer, Cham. https://doi.org/10.1007/978-3-031-19775-8_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19775-8_39

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19774-1

  • Online ISBN: 978-3-031-19775-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics