Abstract
We propose the AgeTransGAN for facial age transformation and the improvements to the metrics for performance evaluation. The AgeTransGAN is composed of an encoder-decoder generator and a conditional multitask discriminator with an age classifier embedded. The generator considers cycle-generation consistency, age classification and cross-age identity consistency to disentangle the identity and age characteristics during training. The discriminator fuses age features with the target age group label and collaborates with the embedded age classifier to warrant the desired target age generation. As many previous work use the Face++ APIs as the metrics for performance evaluation, we reveal via experiments the inappropriateness of using the Face++ as the metrics for the face verification and age estimation of juniors. To rectify the Face++ metrics, we made the Cross-Age Face (CAF) dataset which contains 4000 face images of 520 individuals taken from their childhood to seniorhood. The CAF is one of the very few datasets that offer far more images of the same individuals across large age gaps than the popular FG-Net. We use the CAF to rectify the face verification thresholds of the Face++ APIs across different age gaps. We also use the CAF and FFHQ-Aging datasets to compare the age estimation performance of the Face++ APIs and an age estimator that we made, and propose rectified metrics for performance evaluation. We compare the AgeTransGAN with state-of-the-art approaches by using the existing and rectified metrics.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Alaluf, Y., Patashnik, O., Cohen-Or, D.: Only a matter of style: age transformation using a style-based regression model. ACM Trans. Graph. (TOG) 40(4), 1–12 (2021)
Chen, B.C., Chen, C.S., Hsu, W.H.: Face recognition and retrieval using cross-age reference coding with cross-age celebrity dataset. TMM 17, 804–815 (2015)
Deng, J., Guo, J., Xue, N., Zafeiriou, S.: ArcFace: additive angular margin loss for deep face recognition. In: CVPR (2019)
Fu, Y., Guo, G., Huang, T.S.: Age synthesis and estimation via faces: a survey. TPAMI 32, 1955–1976 (2010)
He, S., Liao, W., Yang, M.Y., Song, Y.Z., Rosenhahn, B., Xiang, T.: Disentangled lifespan face synthesis. In: ICCV (2021)
He, Z., Kan, M., Shan, S., Chen, X.: S2GAN: share aging factors across ages and share aging trends among individuals. In: ICCV (2019)
Huang, X., Belongie, S.: Arbitrary style transfer in real-time with adaptive instance normalization. In: ICCV (2017)
Megvii Inc.: Face++ research toolkit. http://www.faceplusplus.com
Karras, T., Laine, S., Aila, T.: A style-based generator architecture for generative adversarial networks. In: CVPR (2019)
Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J., Aila, T.: Analyzing and improving the image quality of StyleGAN. In: CVPR (2020)
Li, P., Hu, Y., Li, Q., He, R., Sun, Z.: Global and local consistent age generative adversarial networks. In: ICPR (2018)
Li, Z., Jiang, R., Aarabi, P.: Continuous face aging via self-estimated residual age embedding. In: CVPR (2021)
Liu, Y., Li, Q., Sun, Z.: Attribute-aware face aging with wavelet-based generative adversarial networks. In: CVPR (2019)
Mirza, M., Osindero, S.: Conditional generative adversarial nets. arXiv preprint arXiv:1411.1784 (2014)
Miyato, T., Koyama, M.: cGANs with projection discriminator. arXiv preprint arXiv:1802.05637 (2018)
Odena, A., Olah, C., Shlens, J.: Conditional image synthesis with auxiliary classifier GANs. In: ICML (2017)
Or-El, R., Sengupta, S., Fried, O., Shechtman, E., Kemelmacher-Shlizerman, I.: Lifespan age transformation synthesis. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12351, pp. 739–755. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58539-6_44
Reed, S., Akata, Z., Yan, X., Logeswaran, L., Schiele, B., Lee, H.: Generative adversarial text to image synthesis. arXiv preprint arXiv:1605.05396 (2016)
Ricanek, K., Tesafaye, T.: Morph: a longitudinal image database of normal adult age-progression. In: FG (2006)
Rothe, R., Timofte, R., Van Gool, L.: DEX: deep expectation of apparent age from a single image. In: ICCV (2015)
Sricharan, K., Bala, R., Shreve, M., Ding, H., Saketh, K., Sun, J.: Semi-supervised conditional GANs. arXiv preprint arXiv:1708.05789 (2017)
Wang, Z., Tang, X., Luo, W., Gao, S.: Face aging with identity-preserved conditional generative adversarial networks. In: CVPR (2018)
Yang, H., Huang, D., Wang, Y., Jain, A.K.: Learning face age progression: a pyramid architecture of GANs. In: CVPR (2018)
Yang, H., Huang, D., Wang, Y., Jain, A.K.: Learning continuous face age progression: a pyramid of GANs. TPAMI 43, 499–515 (2019)
Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: ICCV (2017)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Hsu, GS., Xie, RC., Chen, ZT., Lin, YH. (2022). AgeTransGAN for Facial Age Transformation with Rectified Performance Metrics. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13672. Springer, Cham. https://doi.org/10.1007/978-3-031-19775-8_34
Download citation
DOI: https://doi.org/10.1007/978-3-031-19775-8_34
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-19774-1
Online ISBN: 978-3-031-19775-8
eBook Packages: Computer ScienceComputer Science (R0)