Skip to main content

AgeTransGAN for Facial Age Transformation with Rectified Performance Metrics

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13672))

Included in the following conference series:

Abstract

We propose the AgeTransGAN for facial age transformation and the improvements to the metrics for performance evaluation. The AgeTransGAN is composed of an encoder-decoder generator and a conditional multitask discriminator with an age classifier embedded. The generator considers cycle-generation consistency, age classification and cross-age identity consistency to disentangle the identity and age characteristics during training. The discriminator fuses age features with the target age group label and collaborates with the embedded age classifier to warrant the desired target age generation. As many previous work use the Face++ APIs as the metrics for performance evaluation, we reveal via experiments the inappropriateness of using the Face++ as the metrics for the face verification and age estimation of juniors. To rectify the Face++ metrics, we made the Cross-Age Face (CAF) dataset which contains 4000 face images of 520 individuals taken from their childhood to seniorhood. The CAF is one of the very few datasets that offer far more images of the same individuals across large age gaps than the popular FG-Net. We use the CAF to rectify the face verification thresholds of the Face++ APIs across different age gaps. We also use the CAF and FFHQ-Aging datasets to compare the age estimation performance of the Face++ APIs and an age estimator that we made, and propose rectified metrics for performance evaluation. We compare the AgeTransGAN with state-of-the-art approaches by using the existing and rectified metrics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alaluf, Y., Patashnik, O., Cohen-Or, D.: Only a matter of style: age transformation using a style-based regression model. ACM Trans. Graph. (TOG) 40(4), 1–12 (2021)

    Article  Google Scholar 

  2. Chen, B.C., Chen, C.S., Hsu, W.H.: Face recognition and retrieval using cross-age reference coding with cross-age celebrity dataset. TMM 17, 804–815 (2015)

    Google Scholar 

  3. Deng, J., Guo, J., Xue, N., Zafeiriou, S.: ArcFace: additive angular margin loss for deep face recognition. In: CVPR (2019)

    Google Scholar 

  4. Fu, Y., Guo, G., Huang, T.S.: Age synthesis and estimation via faces: a survey. TPAMI 32, 1955–1976 (2010)

    Article  Google Scholar 

  5. He, S., Liao, W., Yang, M.Y., Song, Y.Z., Rosenhahn, B., Xiang, T.: Disentangled lifespan face synthesis. In: ICCV (2021)

    Google Scholar 

  6. He, Z., Kan, M., Shan, S., Chen, X.: S2GAN: share aging factors across ages and share aging trends among individuals. In: ICCV (2019)

    Google Scholar 

  7. Huang, X., Belongie, S.: Arbitrary style transfer in real-time with adaptive instance normalization. In: ICCV (2017)

    Google Scholar 

  8. Megvii Inc.: Face++ research toolkit. http://www.faceplusplus.com

  9. Karras, T., Laine, S., Aila, T.: A style-based generator architecture for generative adversarial networks. In: CVPR (2019)

    Google Scholar 

  10. Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J., Aila, T.: Analyzing and improving the image quality of StyleGAN. In: CVPR (2020)

    Google Scholar 

  11. Li, P., Hu, Y., Li, Q., He, R., Sun, Z.: Global and local consistent age generative adversarial networks. In: ICPR (2018)

    Google Scholar 

  12. Li, Z., Jiang, R., Aarabi, P.: Continuous face aging via self-estimated residual age embedding. In: CVPR (2021)

    Google Scholar 

  13. Liu, Y., Li, Q., Sun, Z.: Attribute-aware face aging with wavelet-based generative adversarial networks. In: CVPR (2019)

    Google Scholar 

  14. Mirza, M., Osindero, S.: Conditional generative adversarial nets. arXiv preprint arXiv:1411.1784 (2014)

  15. Miyato, T., Koyama, M.: cGANs with projection discriminator. arXiv preprint arXiv:1802.05637 (2018)

  16. Odena, A., Olah, C., Shlens, J.: Conditional image synthesis with auxiliary classifier GANs. In: ICML (2017)

    Google Scholar 

  17. Or-El, R., Sengupta, S., Fried, O., Shechtman, E., Kemelmacher-Shlizerman, I.: Lifespan age transformation synthesis. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12351, pp. 739–755. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58539-6_44

    Chapter  Google Scholar 

  18. Reed, S., Akata, Z., Yan, X., Logeswaran, L., Schiele, B., Lee, H.: Generative adversarial text to image synthesis. arXiv preprint arXiv:1605.05396 (2016)

  19. Ricanek, K., Tesafaye, T.: Morph: a longitudinal image database of normal adult age-progression. In: FG (2006)

    Google Scholar 

  20. Rothe, R., Timofte, R., Van Gool, L.: DEX: deep expectation of apparent age from a single image. In: ICCV (2015)

    Google Scholar 

  21. Sricharan, K., Bala, R., Shreve, M., Ding, H., Saketh, K., Sun, J.: Semi-supervised conditional GANs. arXiv preprint arXiv:1708.05789 (2017)

  22. Wang, Z., Tang, X., Luo, W., Gao, S.: Face aging with identity-preserved conditional generative adversarial networks. In: CVPR (2018)

    Google Scholar 

  23. Yang, H., Huang, D., Wang, Y., Jain, A.K.: Learning face age progression: a pyramid architecture of GANs. In: CVPR (2018)

    Google Scholar 

  24. Yang, H., Huang, D., Wang, Y., Jain, A.K.: Learning continuous face age progression: a pyramid of GANs. TPAMI 43, 499–515 (2019)

    Article  Google Scholar 

  25. Zhu, J.Y., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using cycle-consistent adversarial networks. In: ICCV (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gee-Sern Hsu .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 2375 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hsu, GS., Xie, RC., Chen, ZT., Lin, YH. (2022). AgeTransGAN for Facial Age Transformation with Rectified Performance Metrics. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13672. Springer, Cham. https://doi.org/10.1007/978-3-031-19775-8_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19775-8_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19774-1

  • Online ISBN: 978-3-031-19775-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics