Abstract
Face recognition technology has been used in many fields due to its high recognition accuracy, including the face unlocking of mobile devices, community access control systems, and city surveillance. As the current high accuracy is guaranteed by very deep network structures, facial images often need to be transmitted to third-party servers with high computational power for inference. However, facial images visually reveal the user’s identity information. In this process, both untrusted service providers and malicious users can significantly increase the risk of a personal privacy breach. Current privacy-preserving approaches to face recognition are often accompanied by many side effects, such as a significant increase in inference time or a noticeable decrease in recognition accuracy. This paper proposes a privacy-preserving face recognition method using differential privacy in the frequency domain. Due to the utilization of differential privacy, it offers a guarantee of privacy in theory. Meanwhile, the loss of accuracy is very slight. This method first converts the original image to the frequency domain and removes the direct component termed DC. Then a privacy budget allocation method can be learned based on the loss of the back-end face recognition network within the differential privacy framework. Finally, it adds the corresponding noise to the frequency domain features. Our method performs very well with several classical face recognition test sets according to the extensive experiments. Code will be available at https://github.com/Tencent/TFace/tree/master/recognition/tasks/dctdp.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bai, F., Wu, J., Shen, P., Li, S., Zhou, S.: Federated face recognition. arXiv preprint arXiv:2105.02501 (2021)
Boemer, F., Cammarota, R., Demmler, D., Schneider, T., Yalame, H.: Mp2ml: a mixed-protocol machine learning framework for private inference. In: Proceedings of the 15th International Conference on Availability, Reliability and Security, pp. 1–10 (2020)
Buades, A., Coll, B., Morel, J.M.: A non-local algorithm for image denoising. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), vol. 2, pp. 60–65. IEEE (2005)
Cao, Q., Shen, L., Xie, W., Parkhi, O.M., Zisserman, A.: VGGFace2: a dataset for recognising faces across pose and age. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 67–74. IEEE (2018)
Carlini, N., et al.: An attack on instahide: is private learning possible with instance encoding? arXiv preprint arXiv:2011.05315 (2020)
Chamikara, M.A.P., Bertók, P., Khalil, I., Liu, D., Camtepe, S.: Privacy preserving face recognition utilizing differential privacy. Comput. Secur. 97, 101951 (2020)
Croft, W.L., Sack, J.R., Shi, W.: Obfuscation of images via differential privacy: from facial images to general images. Peer-to-Peer Netw. Appl. 14(3), 1705–1733 (2021)
Deng, J., Guo, J., Xue, N., Zafeiriou, S.: ArcFace: additive angular margin loss for deep face recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4690–4699 (2019)
Ehrlich, M., Davis, L., Lim, S.N., Shrivastava, A.: Quantization guided jpeg artifact correction. In: Proceedings of the European Conference on Computer Vision (2020)
Frank, J., Eisenhofer, T., Schönherr, L., Fischer, A., Kolossa, D., Holz, T.: Leveraging frequency analysis for deep fake image recognition. In: International Conference on Machine Learning, pp. 3247–3258. PMLR (2020)
Gentry, C., Halevi, S.: Implementing gentry’s fully-homomorphic encryption scheme. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 129–148. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20465-4_9
Gilad-Bachrach, R., Dowlin, N., Laine, K., Lauter, K., Naehrig, M., Wernsing, J.: CryptoNets: applying neural networks to encrypted data with high throughput and accuracy. In: International Conference on Machine Learning, pp. 201–210. PMLR (2016)
Gueguen, L., Sergeev, A., Kadlec, B., Liu, R., Yosinski, J.: Faster neural networks straight from jpeg. Adv. Neural. Inf. Process. Syst. 31, 3933–3944 (2018)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
Huang, G.B., Mattar, M., Berg, T., Learned-Miller, E.: Labeled faces in the wild: a database forstudying face recognition in unconstrained environments. In: Workshop on Faces in ‘Real-Life’ Images: Detection, Alignment, and Recognition (2008)
Huang, J., Guan, D., Xiao, A., Lu, S.: FSDR: frequency space domain randomization for domain generalization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6891–6902 (2021)
Huang, Y., Song, Z., Li, K., Arora, S.: InstaHide: instance-hiding schemes for private distributed learning. In: International Conference on Machine Learning, pp. 4507–4518. PMLR (2020)
Huang, Y., et al.: CurricularFace: adaptive curriculum learning loss for deep face recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5901–5910 (2020)
Juvekar, C., Vaikuntanathan, V., Chandrakasan, A.: GAZELLE: a low latency framework for secure neural network inference. In: 27th USENIX Security Symposium (USENIX Security 2018), pp. 1651–1669. USENIX Association, Baltimore, August 2018. https://www.usenix.org/conference/usenixsecurity18/presentation/juvekar
Kagawade, V.C., Angadi, S.A.: Fusion of frequency domain features of face and iris traits for person identification. J. Inst. Eng. (India): Ser. B 102, 987–996 (2021)
Liu, J., Juuti, M., Lu, Y., Asokan, N.: Oblivious neural network predictions via MiniONN transformations. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, pp. 619–631 (2017)
Liu, W., Wen, Y., Yu, Z., Li, M., Raj, B., Song, L.: SphereFace: deep hypersphere embedding for face recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 212–220 (2017)
Maze, B., et al.: IARPA Janus benchmark-C: face dataset and protocol. In: 2018 International Conference on Biometrics (ICB), pp. 158–165. IEEE (2018)
McSherry, F., Talwar, K.: Mechanism design via differential privacy. In: 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2007), pp. 94–103. IEEE (2007)
Mireshghallah, F., Taram, M., Jalali, A., Elthakeb, A.T.T., Tullsen, D., Esmaeilzadeh, H.: Not all features are equal: Discovering essential features for preserving prediction privacy. In: Proceedings of the Web Conference 2021, pp. 669–680 (2021)
Moschoglou, S., Papaioannou, A., Sagonas, C., Deng, J., Kotsia, I., Zafeiriou, S.: AgeDB: the first manually collected, in-the-wild age database. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 51–59 (2017)
Newton, E.M., Sweeney, L., Malin, B.: Preserving privacy by de-identifying face images. IEEE Trans. Knowl. Data Eng. 17(2), 232–243 (2005)
Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Schroff, F., Kalenichenko, D., Philbin, J.: FaceNet: a unified embedding for face recognition and clustering. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 815–823 (2015)
Sengupta, S., Chen, J.C., Castillo, C., Patel, V.M., Chellappa, R., Jacobs, D.W.: Frontal to profile face verification in the wild. In: 2016 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 1–9. IEEE (2016)
Wang, H., et al.: CosFace: large margin cosine loss for deep face recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5265–5274 (2018)
Wang, H., Wu, X., Huang, Z., Xing, E.P.: High-frequency component helps explain the generalization of convolutional neural networks. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 8681–8691. IEEE (2020)
Wang, X., Zhang, S., Wang, S., Fu, T., Shi, H., Mei, T.: Mis-classified vector guided softmax loss for face recognition. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 12241–12248 (2020)
Wang, Y., Liu, J., Luo, M., Yang, L., Wang, L.: Privacy-preserving face recognition in the frequency domain (2022)
Whitelam, C., et al.: IARPA Janus benchmark-B face dataset. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 90–98 (2017)
Xu, K., Qin, M., Sun, F., Wang, Y., Chen, Y.K., Ren, F.: Learning in the frequency domain. In: IEEE Conference on Computer Vision and Pattern Recognition (2020)
Zhang, H., Cisse, M., Dauphin, Y.N., Lopez-Paz, D.: mixup: beyond empirical risk minimization. In: International Conference on Learning Representations (2018)
Zheng, T., Deng, W., Hu, J.: Cross-age LFW: a database for studying cross-age face recognition in unconstrained environments. arXiv preprint arXiv:1708.08197 (2017)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Ji, J. et al. (2022). Privacy-Preserving Face Recognition with Learnable Privacy Budgets in Frequency Domain. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13672. Springer, Cham. https://doi.org/10.1007/978-3-031-19775-8_28
Download citation
DOI: https://doi.org/10.1007/978-3-031-19775-8_28
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-19774-1
Online ISBN: 978-3-031-19775-8
eBook Packages: Computer ScienceComputer Science (R0)