Skip to main content

Privacy-Preserving Face Recognition with Learnable Privacy Budgets in Frequency Domain

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Abstract

Face recognition technology has been used in many fields due to its high recognition accuracy, including the face unlocking of mobile devices, community access control systems, and city surveillance. As the current high accuracy is guaranteed by very deep network structures, facial images often need to be transmitted to third-party servers with high computational power for inference. However, facial images visually reveal the user’s identity information. In this process, both untrusted service providers and malicious users can significantly increase the risk of a personal privacy breach. Current privacy-preserving approaches to face recognition are often accompanied by many side effects, such as a significant increase in inference time or a noticeable decrease in recognition accuracy. This paper proposes a privacy-preserving face recognition method using differential privacy in the frequency domain. Due to the utilization of differential privacy, it offers a guarantee of privacy in theory. Meanwhile, the loss of accuracy is very slight. This method first converts the original image to the frequency domain and removes the direct component termed DC. Then a privacy budget allocation method can be learned based on the loss of the back-end face recognition network within the differential privacy framework. Finally, it adds the corresponding noise to the frequency domain features. Our method performs very well with several classical face recognition test sets according to the extensive experiments. Code will be available at https://github.com/Tencent/TFace/tree/master/recognition/tasks/dctdp.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bai, F., Wu, J., Shen, P., Li, S., Zhou, S.: Federated face recognition. arXiv preprint arXiv:2105.02501 (2021)

  2. Boemer, F., Cammarota, R., Demmler, D., Schneider, T., Yalame, H.: Mp2ml: a mixed-protocol machine learning framework for private inference. In: Proceedings of the 15th International Conference on Availability, Reliability and Security, pp. 1–10 (2020)

    Google Scholar 

  3. Buades, A., Coll, B., Morel, J.M.: A non-local algorithm for image denoising. In: 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), vol. 2, pp. 60–65. IEEE (2005)

    Google Scholar 

  4. Cao, Q., Shen, L., Xie, W., Parkhi, O.M., Zisserman, A.: VGGFace2: a dataset for recognising faces across pose and age. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 67–74. IEEE (2018)

    Google Scholar 

  5. Carlini, N., et al.: An attack on instahide: is private learning possible with instance encoding? arXiv preprint arXiv:2011.05315 (2020)

  6. Chamikara, M.A.P., Bertók, P., Khalil, I., Liu, D., Camtepe, S.: Privacy preserving face recognition utilizing differential privacy. Comput. Secur. 97, 101951 (2020)

    Article  Google Scholar 

  7. Croft, W.L., Sack, J.R., Shi, W.: Obfuscation of images via differential privacy: from facial images to general images. Peer-to-Peer Netw. Appl. 14(3), 1705–1733 (2021)

    Article  Google Scholar 

  8. Deng, J., Guo, J., Xue, N., Zafeiriou, S.: ArcFace: additive angular margin loss for deep face recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4690–4699 (2019)

    Google Scholar 

  9. Ehrlich, M., Davis, L., Lim, S.N., Shrivastava, A.: Quantization guided jpeg artifact correction. In: Proceedings of the European Conference on Computer Vision (2020)

    Google Scholar 

  10. Frank, J., Eisenhofer, T., Schönherr, L., Fischer, A., Kolossa, D., Holz, T.: Leveraging frequency analysis for deep fake image recognition. In: International Conference on Machine Learning, pp. 3247–3258. PMLR (2020)

    Google Scholar 

  11. Gentry, C., Halevi, S.: Implementing gentry’s fully-homomorphic encryption scheme. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 129–148. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20465-4_9

    Chapter  Google Scholar 

  12. Gilad-Bachrach, R., Dowlin, N., Laine, K., Lauter, K., Naehrig, M., Wernsing, J.: CryptoNets: applying neural networks to encrypted data with high throughput and accuracy. In: International Conference on Machine Learning, pp. 201–210. PMLR (2016)

    Google Scholar 

  13. Gueguen, L., Sergeev, A., Kadlec, B., Liu, R., Yosinski, J.: Faster neural networks straight from jpeg. Adv. Neural. Inf. Process. Syst. 31, 3933–3944 (2018)

    Google Scholar 

  14. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  15. Huang, G.B., Mattar, M., Berg, T., Learned-Miller, E.: Labeled faces in the wild: a database forstudying face recognition in unconstrained environments. In: Workshop on Faces in ‘Real-Life’ Images: Detection, Alignment, and Recognition (2008)

    Google Scholar 

  16. Huang, J., Guan, D., Xiao, A., Lu, S.: FSDR: frequency space domain randomization for domain generalization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6891–6902 (2021)

    Google Scholar 

  17. Huang, Y., Song, Z., Li, K., Arora, S.: InstaHide: instance-hiding schemes for private distributed learning. In: International Conference on Machine Learning, pp. 4507–4518. PMLR (2020)

    Google Scholar 

  18. Huang, Y., et al.: CurricularFace: adaptive curriculum learning loss for deep face recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5901–5910 (2020)

    Google Scholar 

  19. Juvekar, C., Vaikuntanathan, V., Chandrakasan, A.: GAZELLE: a low latency framework for secure neural network inference. In: 27th USENIX Security Symposium (USENIX Security 2018), pp. 1651–1669. USENIX Association, Baltimore, August 2018. https://www.usenix.org/conference/usenixsecurity18/presentation/juvekar

  20. Kagawade, V.C., Angadi, S.A.: Fusion of frequency domain features of face and iris traits for person identification. J. Inst. Eng. (India): Ser. B 102, 987–996 (2021)

    Google Scholar 

  21. Liu, J., Juuti, M., Lu, Y., Asokan, N.: Oblivious neural network predictions via MiniONN transformations. In: Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security, pp. 619–631 (2017)

    Google Scholar 

  22. Liu, W., Wen, Y., Yu, Z., Li, M., Raj, B., Song, L.: SphereFace: deep hypersphere embedding for face recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 212–220 (2017)

    Google Scholar 

  23. Maze, B., et al.: IARPA Janus benchmark-C: face dataset and protocol. In: 2018 International Conference on Biometrics (ICB), pp. 158–165. IEEE (2018)

    Google Scholar 

  24. McSherry, F., Talwar, K.: Mechanism design via differential privacy. In: 48th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2007), pp. 94–103. IEEE (2007)

    Google Scholar 

  25. Mireshghallah, F., Taram, M., Jalali, A., Elthakeb, A.T.T., Tullsen, D., Esmaeilzadeh, H.: Not all features are equal: Discovering essential features for preserving prediction privacy. In: Proceedings of the Web Conference 2021, pp. 669–680 (2021)

    Google Scholar 

  26. Moschoglou, S., Papaioannou, A., Sagonas, C., Deng, J., Kotsia, I., Zafeiriou, S.: AgeDB: the first manually collected, in-the-wild age database. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 51–59 (2017)

    Google Scholar 

  27. Newton, E.M., Sweeney, L., Malin, B.: Preserving privacy by de-identifying face images. IEEE Trans. Knowl. Data Eng. 17(2), 232–243 (2005)

    Article  Google Scholar 

  28. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  29. Schroff, F., Kalenichenko, D., Philbin, J.: FaceNet: a unified embedding for face recognition and clustering. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 815–823 (2015)

    Google Scholar 

  30. Sengupta, S., Chen, J.C., Castillo, C., Patel, V.M., Chellappa, R., Jacobs, D.W.: Frontal to profile face verification in the wild. In: 2016 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 1–9. IEEE (2016)

    Google Scholar 

  31. Wang, H., et al.: CosFace: large margin cosine loss for deep face recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5265–5274 (2018)

    Google Scholar 

  32. Wang, H., Wu, X., Huang, Z., Xing, E.P.: High-frequency component helps explain the generalization of convolutional neural networks. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 8681–8691. IEEE (2020)

    Google Scholar 

  33. Wang, X., Zhang, S., Wang, S., Fu, T., Shi, H., Mei, T.: Mis-classified vector guided softmax loss for face recognition. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 12241–12248 (2020)

    Google Scholar 

  34. Wang, Y., Liu, J., Luo, M., Yang, L., Wang, L.: Privacy-preserving face recognition in the frequency domain (2022)

    Google Scholar 

  35. Whitelam, C., et al.: IARPA Janus benchmark-B face dataset. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 90–98 (2017)

    Google Scholar 

  36. Xu, K., Qin, M., Sun, F., Wang, Y., Chen, Y.K., Ren, F.: Learning in the frequency domain. In: IEEE Conference on Computer Vision and Pattern Recognition (2020)

    Google Scholar 

  37. Zhang, H., Cisse, M., Dauphin, Y.N., Lopez-Paz, D.: mixup: beyond empirical risk minimization. In: International Conference on Learning Representations (2018)

    Google Scholar 

  38. Zheng, T., Deng, W., Hu, J.: Cross-age LFW: a database for studying cross-age face recognition in unconstrained environments. arXiv preprint arXiv:1708.08197 (2017)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiazhen Ji .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 1070 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ji, J. et al. (2022). Privacy-Preserving Face Recognition with Learnable Privacy Budgets in Frequency Domain. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13672. Springer, Cham. https://doi.org/10.1007/978-3-031-19775-8_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19775-8_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19774-1

  • Online ISBN: 978-3-031-19775-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics