Skip to main content

HIVE: Evaluating the Human Interpretability of Visual Explanations

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Abstract

As AI technology is increasingly applied to high-impact, high-risk domains, there have been a number of new methods aimed at making AI models more human interpretable. Despite the recent growth of interpretability work, there is a lack of systematic evaluation of proposed techniques. In this work, we introduce HIVE (Human Interpretability of Visual Explanations), a novel human evaluation framework that assesses the utility of explanations to human users in AI-assisted decision making scenarios, and enables falsifiable hypothesis testing, cross-method comparison, and human-centered evaluation of visual interpretability methods. To the best of our knowledge, this is the first work of its kind. Using HIVE, we conduct IRB-approved human studies with nearly 1000 participants and evaluate four methods that represent the diversity of computer vision interpretability works: GradCAM, BagNet, ProtoPNet, and ProtoTree. Our results suggest that explanations engender human trust, even for incorrect predictions, yet are not distinct enough for users to distinguish between correct and incorrect predictions. We open-source HIVE to enable future studies and encourage more human-centered approaches to interpretability research. HIVE can be found at https://princetonvisualai.github.io/HIVE.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    We compare our results to chance performance instead of a baseline without explanations because we omit semantic class labels to remove the effect of human prior knowledge (see Sect. 3.1); so such a baseline would contain no relevant information.

References

  1. Adebayo, J., Gilmer, J., Muelly, M., Goodfellow, I., Hardt, M., Kim, B.: Sanity checks for saliency maps. In: NeurIPS (2018)

    Google Scholar 

  2. Adebayo, J., Muelly, M., Liccardi, I., Kim, B.: Debugging tests for model explanations. In: NeurIPS (2020)

    Google Scholar 

  3. Agarwal, C., D’souza, D., Hooker, S.: Estimating example difficulty using variance of gradients. In: CVPR (2022)

    Google Scholar 

  4. Arrieta, A.B., et al.: Explainable artificial intelligence (XAI): concepts, taxonomies, opportunities and challenges toward responsible AI. Inf. Fus. 58, 82–115 (2020)

    Google Scholar 

  5. Bach, S., Binder, A., Montavon, G., Klauschen, F., Müller, K.R., Samek, W.: On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation. PLoS ONE 10, e0130140 (2015)

    Google Scholar 

  6. Bau, D., Zhou, B., Khosla, A., Oliva, A., Torralba, A.: Network dissection: quantifying interpretability of deep visual representations. In: CVPR (2017)

    Google Scholar 

  7. Bau, D., et al.: Seeing what a GAN cannot generate. In: ICCV (2019)

    Google Scholar 

  8. Biessmann, F., Refiano, D.I.: A psychophysics approach for quantitative comparison of interpretable computer vision models (2019)

    Google Scholar 

  9. Borowski, J., et al.: Exemplary natural images explain CNN activations better than state-of-the-art feature visualization. In: ICLR (2021)

    Google Scholar 

  10. Brendel, W., Bethge, M.: Approximating CNNs with bag-of-local-features models works surprisingly well on ImageNet. In: ICLR (2019)

    Google Scholar 

  11. Brundage, M., et al.: Toward trustworthy AI development: mechanisms for supporting verifiable claims (2020)

    Google Scholar 

  12. Bylinskii, Z., Herman, L., Hertzmann, A., Hutka, S., Zhang, Y.: Towards better user studies in computer graphics and vision. arXiv (2022)

    Google Scholar 

  13. Böhle, M., Fritz, M., Schiele, B.: Convolutional dynamic alignment networks for interpretable classifications. In: CVPR (2021)

    Google Scholar 

  14. Böhle, M., Fritz, M., Schiele, B.: B-Cos networks: alignment is all we need for interpretability. In: CVPR (2022)

    Google Scholar 

  15. Chen, C., Li, O., Tao, D., Barnett, A., Rudin, C., Su, J.K.: This looks like that: deep learning for interpretable image recognition. In: NeurIPS (2019)

    Google Scholar 

  16. Chen, V., Li, J., Kim, J.S., Plumb, G., Talwalkar, A.: Towards connecting use cases and methods in interpretable machine learning. In: ICML Workshop on Human Interpretability in Machine Learning (2021)

    Google Scholar 

  17. Donnelly, J., Barnett, A.J., Chen, C.: Deformable ProtoPNet: an interpretable image classifier using deformable prototypes. In: CVPR (2022)

    Google Scholar 

  18. Dubey, A., Radenovic, F., Mahajan, D.: Scalable interpretability via polynomials. arXiv (2022)

    Google Scholar 

  19. Dzindolet, M.T., Peterson, S.A., Pomranky, R.A., Pierce, L.G., Beck, H.P.: The role of trust in automation reliance. In: IJHCS (2003)

    Google Scholar 

  20. Ehsan, U., Riedl, M.O.: Human-centered explainable AI: towards a reflective sociotechnical approach. In: Stephanidis, C., Kurosu, M., Degen, H., Reinerman-Jones, L. (eds.) HCII 2020. LNCS, vol. 12424, pp. 449–466. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60117-1_33

    Chapter  Google Scholar 

  21. Ehsan, U., et al.: Operationalizing human-centered perspectives in explainable AI. In: CHI Extended Abstracts (2021)

    Google Scholar 

  22. Ehsan, U., et al.: Human-centered explainable AI (HCXAI): beyond opening the black-box of AI. In: CHI Extended Abstracts (2022)

    Google Scholar 

  23. Fel, T., Colin, J., Cadène, R., Serre, T.: What I cannot predict, I do not understand: a human-centered evaluation framework for explainability methods (2021)

    Google Scholar 

  24. Fong, R.: Understanding convolutional neural networks. Ph.D. thesis, University of Oxford (2020)

    Google Scholar 

  25. Fong, R., Patrick, M., Vedaldi, A.: Understanding deep networks via extremal perturbations and smooth masks. In: ICCV (2019)

    Google Scholar 

  26. Fong, R., Vedaldi, A.: Interpretable explanations of black boxes by meaningful perturbation. In: ICCV (2017)

    Google Scholar 

  27. Fong, R., Vedaldi, A.: Net2Vec: quantifying and explaining how concepts are encoded by filters in deep neural networks. In: CVPR (2018)

    Google Scholar 

  28. Gilpin, L.H., Bau, D., Yuan, B.Z., Bajwa, A., Specter, M., Kagal, L.: Explaining explanations: an overview of interpretability of machine learning. In: DSAA (2018)

    Google Scholar 

  29. Goyal, Y., Wu, Z., Ernst, J., Batra, D., Parikh, D., Lee, S.: Counterfactual visual explanations. In: ICML (2019)

    Google Scholar 

  30. Gunning, D., Aha, D.: DARPA’s explainable artificial intelligence (XAI) program. AI Mag. 40, 44–58 (2019)

    Google Scholar 

  31. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR (2016)

    Google Scholar 

  32. Herlocker, J.L., Konstan, J.A., Riedl, J.: Explaining collaborative filtering recommendations. In: CSCW (2000)

    Google Scholar 

  33. Hoffmann, A., Fanconi, C., Rade, R., Kohler, J.: This looks like that... does it? Shortcomings of latent space prototype interpretability in deep networks. In: ICML Workshop on Theoretic Foundation, Criticism, and Application Trend of Explainable AI (2021)

    Google Scholar 

  34. Hooker, S., Erhan, D., Kindermans, P.J., Kim, B.: A benchmark for interpretability methods in deep neural networks. In: NeurIPS (2019)

    Google Scholar 

  35. Jeyakumar, J.V., Noor, J., Cheng, Y.H., Garcia, L., Srivastava, M.: How can I explain this to you? An empirical study of deep neural network explanation methods. In: NeurIPS (2020)

    Google Scholar 

  36. Kim, B., Reif, E., Wattenberg, M., Bengio, S., Mozer, M.C.: Neural networks trained on natural scenes exhibit gestalt closure. Comput. Brain Behav. 4, 251–263 (2021). https://doi.org/10.1007/s42113-021-00100-7

    Article  Google Scholar 

  37. Koh, P.W., Liang, P.: Understanding black-box predictions via influence functions. In: ICML (2017)

    Google Scholar 

  38. Koh, P.W., Nguyen, T., Tang, Y.S., Mussmann, S., Pierson, E., Kim, B., Liang, P.: Concept bottleneck models. In: ICML (2020)

    Google Scholar 

  39. Kunkel, J., Donkers, T., Michael, L., Barbu, C.M., Ziegler, J.: Let me explain: Impact of personal and impersonal explanations on trust in recommender systems. In: CHI (2019)

    Google Scholar 

  40. Lage, I., Chen, E., He, J., Narayanan, M., Kim, B., Gershman, S.J., Doshi-Velez, F.: Human evaluation of models built for interpretability. In: HCOMP (2019)

    Google Scholar 

  41. Lage, I., Ross, A.S., Kim, B., Gershman, S.J., Doshi-Velez, F.: Human-in-the-loop interpretability prior. In: NeurIPS (2018)

    Google Scholar 

  42. Lai, V., Tan, C.: On human predictions with explanations and predictions of machine learning models: a case study on deception detection. In: FAccT (2019)

    Google Scholar 

  43. Lakkaraju, H., Bach, S.H., Leskovec, J.: Interpretable decision sets: a joint framework for description and prediction. In: KDD (2016)

    Google Scholar 

  44. Leavitt, M.L., Morcos, A.S.: Towards falsifiable interpretability research. In: NeurIPS Workshop on ML Retrospectives, Surveys & Meta-Analyses (2020)

    Google Scholar 

  45. Liao, Q.V., Varshney, K.R.: Human-centered explainable AI (XAI): from algorithms to user experiences. arXiv (2021)

    Google Scholar 

  46. Lipton, Z.C.: The mythos of model interpretability: in machine learning, the concept of interpretability is both important and slippery. Queue 16, 31–57 (2018)

    Google Scholar 

  47. Margeloiu, A., Ashman, M., Bhatt, U., Chen, Y., Jamnik, M., Weller, A.: Do concept bottleneck models learn as intended? In: ICLR Workshop on Responsible AI (2021)

    Google Scholar 

  48. Nauta, M., van Bree, R., Seifert, C.: Neural prototype trees for interpretable fine-grained image recognition. In: CVPR (2021)

    Google Scholar 

  49. Nguyen, G., Kim, D., Nguyen, A.: The effectiveness of feature attribution methods and its correlation with automatic evaluation scores. In: NeurIPS (2021)

    Google Scholar 

  50. Petsiuk, V., Das, A., Saenko, K.: RISE: Randomized input sampling for explanation of black-box models. In: BMVC (2018)

    Google Scholar 

  51. Poppi, S., Cornia, M., Baraldi, L., Cucchiara, R.: Revisiting the evaluation of class activation mapping for explainability: a novel metric and experimental analysis. In: CVPR Workshop on Responsible Computer Vision (2021)

    Google Scholar 

  52. Poursabzi-Sangdeh, F., Goldstein, D.G., Hofman, J.M., Wortman Vaughan, J.W., Wallach, H.: Manipulating and measuring model interpretability. In: CHI (2021)

    Google Scholar 

  53. Radenovic, F., Dubey, A., Mahajan, D.: Neural basis models for interpretability. arXiv (2022)

    Google Scholar 

  54. Ramaswamy, V.V., Kim, S.S.Y., Fong, R., Russakovsky, O.: Overlooked factors in concept-based explanations: dataset choice, concept salience, and human capability. arXiv (2022)

    Google Scholar 

  55. Ramaswamy, V.V., Kim, S.S.Y., Meister, N., Fong, R., Russakovsky, O.: ELUDE: generating interpretable explanations via a decomposition into labelled and unlabelled features. arXiv (2022)

    Google Scholar 

  56. Ribeiro, M.T., Singh, S., Guestrin, C.: “Why should I trust you?”: explaining the predictions of any classifier. In: KDD (2016)

    Google Scholar 

  57. Rudin, C., Chen, C., Chen, Z., Huang, H., Semenova, L., Zhong, C.: Interpretable machine learning: fundamental principles and 10 grand challenges. In: Statistics Surveys (2021)

    Google Scholar 

  58. Russakovsky, O., et al.: ImageNet large scale visual recognition challenge. Int. J. Compu. Vis. 115(3), 211–252 (2015). https://doi.org/10.1007/s11263-015-0816-y

    Article  MathSciNet  Google Scholar 

  59. Alber, M.: Software and application patterns for explanation methods. In: Samek, W., Montavon, G., Vedaldi, A., Hansen, L.K., Müller, K.-R. (eds.) Explainable AI: Interpreting, Explaining and Visualizing Deep Learning. LNCS (LNAI), vol. 11700, pp. 399–433. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-28954-6_22

    Chapter  Google Scholar 

  60. Schaffer, J., O’Donovan, J., Michaelis, J., Raglin, A., Höllerer, T.: I can do better than your AI: expertise and explanations. In: IUI (2019)

    Google Scholar 

  61. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-CAM: visual explanations from deep networks via gradient-based localization. In: ICCV (2017)

    Google Scholar 

  62. Shen, H., Huang, T.H.K.: How useful are the machine-generated interpretations to general users? A human evaluation on guessing the incorrectly predicted labels. In: HCOMP (2020)

    Google Scholar 

  63. Shitole, V., Li, F., Kahng, M., Tadepalli, P., Fern, A.: One explanation is not enough: structured attention graphs for image classification. In: NeurIPS (2021)

    Google Scholar 

  64. Simonyan, K., Vedaldi, A., Zisserman, A.: Deep inside convolutional networks: Visualising image classification models and saliency maps. In: ICLR Workshops (2014)

    Google Scholar 

  65. Vandenhende, S., Mahajan, D., Radenovic, F., Ghadiyaram, D.: Making heads or tails: Towards semantically consistent visual counterfactuals. In: Farinella T. (ed.) ECCV 2022. LNCS, vol. 13672, pp. 261–279 (2022)

    Google Scholar 

  66. Wah, C., Branson, S., Welinder, P., Perona, P., Belongie, S.: The caltech-UCSD birds-200-2011 dataset. Technical report CNS-TR-2011-001, California Institute of Technology (2011)

    Google Scholar 

  67. Wang, H., et al.: Score-CAM: score-weighted visual explanations for convolutional neural networks. In: CVPR Workshops (2020)

    Google Scholar 

  68. Wang, P., Vasconcelos, N.: Towards realistic predictors. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11217, pp. 37–53. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01261-8_3

    Chapter  Google Scholar 

  69. Wang, P., Vasconcelos, N.: SCOUT: self-aware discriminant counterfactual explanations. In: CVPR (2020)

    Google Scholar 

  70. Yang, M., Kim, B.: Benchmarking attribution methods with relative feature importance (2019)

    Google Scholar 

  71. Yeh, C.K., Kim, J., Yen, I.E.H., Ravikumar, P.K.: Representer point selection for explaining deep neural networks. In: NeurIPS (2018)

    Google Scholar 

  72. Yin, M., Wortman Vaughan, J., Wallach, H.: Understanding the effect of accuracy on trust in machine learning models. In: CHI (2019)

    Google Scholar 

  73. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 818–833. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10590-1_53

    Chapter  Google Scholar 

  74. Zhang, J., Lin, Z., Brandt, J., Shen, X., Sclaroff, S.: Top-down neural attention by excitation backprop. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 543–559. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_33

    Chapter  Google Scholar 

  75. Zhang, P., Wang, J., Farhadi, A., Hebert, M., Parikh, D.: Predicting failures of vision systems. In: CVPR (2014)

    Google Scholar 

  76. Zhang, Y., Liao, Q.V., Bellamy, R.K.E.: Effect on confidence and explanation on accuracy and trust calibration in AI-assisted decision making. In: FAccT (2020)

    Google Scholar 

  77. Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., Torralba, A.: Learning deep features for discriminative localization. In: CVPR (2016)

    Google Scholar 

  78. Zhou, B., Sun, Y., Bau, D., Torralba, A.: interpretable basis decomposition for visual explanation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11212, pp. 122–138. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01237-3_8

    Chapter  Google Scholar 

  79. Zhou, S., Gordon, M.L., Krishna, R., Narcomey, A., Fei-Fei, L., Bernstein, M.S.: HYPE: A benchmark for human eye perceptual evaluation of generative models. In: NeurIPS (2019)

    Google Scholar 

  80. Zimmermann, R.S., Borowski, J., Geirhos, R., Bethge, M., Wallis, T.S.A., Brendel, W.: How well do feature visualizations support causal understanding of CNN activations? In: NeurIPS (2021)

    Google Scholar 

Download references

Acknowledgments

This material is based upon work partially supported by the National Science Foundation (NSF) under Grant No. 1763642. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the NSF. We also acknowledge support from the Princeton SEAS Howard B. Wentz, Jr. Junior Faculty Award (OR), Princeton SEAS Project X Fund (RF, OR), Open Philanthropy (RF, OR), and Princeton SEAS and ECE Senior Thesis Funding (NM). We thank the authors of [10, 15, 31, 33, 48, 61] for open-sourcing their code and/or trained models. We also thank the AMT workers who participated in our studies, anonymous reviewers who provided thoughtful feedback, and Princeton Visual AI Lab members (especially Dora Zhao, Kaiyu Yang, and Angelina Wang) who tested our user interface and provided helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunnie S. Y. Kim .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 3388 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kim, S.S.Y., Meister, N., Ramaswamy, V.V., Fong, R., Russakovsky, O. (2022). HIVE: Evaluating the Human Interpretability of Visual Explanations. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13672. Springer, Cham. https://doi.org/10.1007/978-3-031-19775-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19775-8_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19774-1

  • Online ISBN: 978-3-031-19775-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics