Abstract
Predictive uncertainty estimation is essential for deploying Deep Neural Networks in real-world autonomous systems. However, most successful approaches are computationally intensive. In this work, we attempt to address these challenges in the context of autonomous driving perception tasks. Recently proposed Deterministic Uncertainty Methods (DUM) can only partially meet such requirements as their scalability to complex computer vision tasks is not obvious. In this work we advance a scalable and effective DUM for high-resolution semantic segmentation, that relaxes the Lipschitz constraint typically hindering practicality of such architectures. We learn a discriminant latent space by leveraging a distinction maximization layer over an arbitrarily-sized set of trainable prototypes. Our approach achieves competitive results over Deep Ensembles, the state of the art for uncertainty prediction, on image classification, segmentation and monocular depth estimation tasks. Our code is available at https://github.com/ENSTA-U2IS/LDU.
G. Franchi and Franchi X. Yu—Equal contribution.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aggarwal, C.C., Hinneburg, A., Keim, D.A.: On the surprising behavior of distance metrics in high dimensional space. In: Van den Bussche, J., Vianu, V. (eds.) ICDT 2001. LNCS, vol. 1973, pp. 420–434. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44503-X_27
Alemi, A.A., Fischer, I., Dillon, J.V.: Uncertainty in the variational information bottleneck. In: UAI (2018)
van Amersfoort, J., Smith, L., Jesson, A., Key, O., Gal, Y.: Improving deterministic uncertainty estimation in deep learning for classification and regression. arXiv preprint arXiv:2102.11409 (2021)
Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein generative adversarial networks. In: ICLR (2017)
Asai, A., Ikami, D., Aizawa, K.: Multi-task learning based on separable formulation of depth estimation and its uncertainty. In: CVPR Workshops (2019)
Assent, I.: Clustering high dimensional data. KDD (2012)
Behrmann, J., Grathwohl, W., Chen, R.T., Duvenaud, D., Jacobsen, J.H.: Invertible residual networks. In: ICML (2019)
Besnier, V., Bursuc, A., Picard, D., Briot, A.: Triggering failures: out-of-distribution detection by learning from local adversarial attacks in semantic segmentation. In: ICCV (2021)
Bhat, S.F., Alhashim, I., Wonka, P.: AdaBins: depth estimation using adaptive bins. In: CVPR (2021)
Blundell, C., Cornebise, J., Kavukcuoglu, K., Wierstra, D.: Weight uncertainty in neural network. In: ICML (2015)
Boucheron, S., Lugosi, G., Massart, P.: Concentration Inequalities: A Nonasymptotic Theory of Independence. Oxford University Press, Oxford (2013)
Cao, Z., Hidalgo Martinez, G., Simon, T., Wei, S., Sheikh, Y.A.: OpenPose: realtime multi-person 2D pose estimation using part affinity fields. TPAMI (2019)
Chen, G., et al.: Learning open set network with discriminative reciprocal points. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12348, pp. 507–522. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58580-8_30
Chen, L.-C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder with atrous separable convolution for semantic image segmentation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 833–851. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_49
Corbière, C., Thome, N., Bar-Hen, A., Cord, M., Pérez, P.: Addressing failure prediction by learning model confidence. In: NeurIPS (2019)
Cordts, M., et al.: The cityscapes dataset for semantic urban scene understanding. In: CVPR (2016)
Der Kiureghian, A., Ditlevsen, O.: Aleatory or epistemic? Does it matter? Structural safety (2009)
Dijk, T.v., Croon, G.d.: How do neural networks see depth in single images? In: ICCV (2019)
Du, X., Wang, Z., Cai, M., Li, Y.: VOS: learning what you don’t know by virtual outlier synthesis. In: ICLR (2022)
Dusenberry, M., et al.: Efficient and scalable Bayesian neural nets with rank-1 factors. In: ICML (2020)
Eigen, D., Puhrsch, C., Fergus, R.: Depth map prediction from a single image using a multi-scale deep network. In: NeurIPS (2014)
Everingham, M., et al.: The Pascal visual object classes challenge: a retrospective. Int. J. Comput. Vis. 111(1), 98–136 (2014). https://doi.org/10.1007/s11263-014-0733-5
Fort, S., Hu, H., Lakshminarayanan, B.: Deep ensembles: a loss landscape perspective. arXiv preprint arXiv:1912.02757 (2019)
Franchi, G., Belkhir, N., Ha, M.L., Hu, Y., Bursuc, A., Blanz, V., Yao, A.: Robust semantic segmentation with superpixel-mix. In: BMVC (2021)
Franchi, G., Bursuc, A., Aldea, E., Dubuisson, S., Bloch, I.: TRADI: tracking deep neural network weight distributions. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12362, pp. 105–121. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58520-4_7
Franchi, G., et al.: MUAD: multiple uncertainties for autonomous driving benchmark for multiple uncertainty types and tasks. arXiv preprint arXiv:2203.01437 (2022)
Gal, Y., Ghahramani, Z.: Dropout as a Bayesian approximation: representing model uncertainty in deep learning. In: ICML (2016)
Gidaris, S., Komodakis, N.: Dynamic few-shot visual learning without forgetting. In: CVPR (2018)
Gong, D., et al.: Memorizing normality to detect anomaly: memory-augmented deep autoencoder for unsupervised anomaly detection. In: ICCV (2019)
Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.: Improved training of Wasserstein GANs. In: NeurIPS (2017)
Guo, C., Pleiss, G., Sun, Y., Weinberger, K.Q.: On calibration of modern neural networks. In: ICML (2017)
Gustafsson, F.K., Danelljan, M., Schon, T.B.: Evaluating scalable Bayesian deep learning methods for robust computer vision. In: CVPR Workshops (2020)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR (2016)
Hendrycks, D., Basart, S., Mazeika, M., Mostajabi, M., Steinhardt, J., Song, D.: A benchmark for anomaly segmentation. arXiv preprint arXiv:1911.11132 (2019)
Hendrycks, D., Dietterich, T.: Benchmarking neural network robustness to common corruptions and perturbations. In: ICLR (2019)
Hendrycks, D., Gimpel, K.: A baseline for detecting misclassified and out-of-distribution examples in neural networks. In: ICLR (2017)
Hernández-Lobato, J.M., Adams, R.: Probabilistic backpropagation for scalable learning of Bayesian neural networks. In: ICML (2015)
Hu, S., Pezzotti, N., Welling, M.: Learning to predict error for MRI reconstruction. In: de Bruijne, M., et al. (eds.) MICCAI 2021. LNCS, vol. 12903, pp. 604–613. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87199-4_57
Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: CVPR (2017)
Ilg, E., et al.: Uncertainty estimates and multi-hypotheses networks for optical flow. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 677–693. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_40
Kamann, C., Rother, C.: Benchmarking the robustness of semantic segmentation models with respect to common corruptions. IJCV (2021)
Kendall, A., Badrinarayanan, V., Cipolla, R.: Bayesian SegNet: model uncertainty in deep convolutional encoder-decoder architectures for scene understanding. arXiv preprint arXiv:1511.02680 (2015)
Kendall, A., Gal, Y.: What uncertainties do we need in Bayesian deep learning for computer vision? In: NeurIPS (2017)
Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from tiny images. Technical report (2009)
Lakshminarayanan, B., Pritzel, A., Blundell, C.: Simple and scalable predictive uncertainty estimation using deep ensembles. In: NeurIPS (2017)
Lee, J.H., Han, M.K., Ko, D.W., Suh, I.H.: From big to small: multi-scale local planar guidance for monocular depth estimation. arXiv preprint arXiv:1907.10326 (2019)
Liu, C.L., Nakagawa, M.: Evaluation of prototype learning algorithms for nearest-neighbor classifier in application to handwritten character recognition. Pattern Recognit. 34, 601–615
Liu, J.Z., Lin, Z., Padhy, S., Tran, D., Bedrax-Weiss, T., Lakshminarayanan, B.: Simple and principled uncertainty estimation with deterministic deep learning via distance awareness. In: NeurIPS (2020)
Macêdo, D., Ren, T.I., Zanchettin, C., Oliveira, A.L., Ludermir, T.: Entropic out-of-distribution detection. In: IJCNN (2021)
Macêdo, D., Zanchettin, C., Ludermir, T.: Distinction maximization loss: efficiently improving classification accuracy, uncertainty estimation, and out-of-distribution detection simply replacing the loss and calibrating. arXiv preprint arXiv:2205.05874 (2022)
Malinin, A., Gales, M.: Predictive uncertainty estimation via prior networks (2018)
Malinin, A., Mlodozeniec, B., Gales, M.: Ensemble distribution distillation. In: ICLR (2020)
Mandelbaum, A., Weinshall, D.: Distance-based confidence score for neural network classifiers. arXiv preprint arXiv:1709.09844 (2017)
Mi, L., Wang, H., Tian, Y., Shavit, N.: Training-free uncertainty estimation for dense regression: Sensitivity as a surrogate. In: AAAI (2022)
Miyato, T., Kataoka, T., Koyama, M., Yoshida, Y.: Spectral normalization for generative adversarial networks. In: ICLR (2018)
Mukhoti, J., Kirsch, A., van Amersfoort, J., Torr, P.H., Gal, Y.: Deterministic neural networks with appropriate inductive biases capture epistemic and aleatoric uncertainty. In: ICML Workshops (2021)
Mukhoti, J., Kulharia, V., Sanyal, A., Golodetz, S., Torr, P.H., Dokania, P.K.: Calibrating deep neural networks using focal loss. In: NeurIPS (2020)
Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., Ng, A.Y.: Reading digits in natural images with unsupervised feature learning. In: NeurIPS (2011)
Nix, D., Weigend, A.: Estimating the mean and variance of the target probability distribution. In: ICNN (1994)
Ovadia, Y., et al.: Can you trust your model’s uncertainty? Evaluating predictive uncertainty under dataset shift. In: NeurIPS (2019)
Padhy, S., Nado, Z., Ren, J., Liu, J., Snoek, J., Lakshminarayanan, B.: Revisiting one-vs-all classifiers for predictive uncertainty and out-of-distribution detection in neural networks. In: ICML Workshops (2020)
Pinto, F., Yang, H., Lim, S.N., Torr, P., Dokania, P.K.: Mix-MaxEnt: improving accuracy and uncertainty estimates of deterministic neural networks. In: NeurIPS Workshops (2021)
Poggi, M., Aleotti, F., Tosi, F., Mattoccia, S.: On the uncertainty of self-supervised monocular depth estimation. In: CVPR (2020)
Postels, J., et al.: The hidden uncertainty in a neural networks activations. In: ICML (2021)
Postels, J., Segu, M., Sun, T., Van Gool, L., Yu, F., Tombari, F.: On the practicality of deterministic epistemic uncertainty. arXiv preprint arXiv:2107.00649 (2021)
Qi, H., Brown, M., Lowe, D.G.: Low-shot learning with imprinted weights. In: CVPR (2018)
Razavi, A., Van den Oord, A., Vinyals, O.: Generating diverse high-fidelity images with VQ-VAE-2. In: NeurIPS (2019)
Rebut, J., Bursuc, A., Pérez, P.: StyleLess layer: improving robustness for real-world driving. In: IROS (2021)
Rogez, G., Weinzaepfel, P., Schmid, C.: LCR-Net++: multi-person 2D and 3D pose detection in natural images. TPAMI (2019)
Snell, J., Swersky, K., Zemel, R.S.: Prototypical networks for few-shot learning. In: NeurIPS (2017)
Sun, D., Yang, X., Liu, M.Y., Kautz, J.: PWC-Net: CNNs for optical flow using pyramid, warping, and cost volume. In: CVPR (2018)
Teed, Z., Deng, J.: RAFT: recurrent all-pairs field transforms for optical flow. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12347, pp. 402–419. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58536-5_24
Uhrig, J., Schneider, N., Schneider, L., Franke, U., Brox, T., Geiger, A.: Sparsity invariant CNNs. In: 3DV (2017)
Van Amersfoort, J., Smith, L., Teh, Y.W., Gal, Y.: Uncertainty estimation using a single deep deterministic neural network. In: ICML (2020)
Van Den Oord, A., Vinyals, O., et al.: Neural discrete representation learning. In: NeurIPS (2017)
Wen, Y., Zhang, K., Li, Z., Qiao, Yu.: A discriminative feature learning approach for deep face recognition. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9911, pp. 499–515. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46478-7_31
Wen, Y., Tran, D., Ba, J.: BatchEnsemble: an alternative approach to efficient ensemble and lifelong learning. In: ICLR (2020)
Wilson, A.G., Izmailov, P.: Bayesian deep learning and a probabilistic perspective of generalization. arXiv preprint arXiv:2002.08791 (2020)
Wu, M., Goodman, N.: A simple framework for uncertainty in contrastive learning. arXiv preprint arXiv:2010.02038 (2020)
Yang, H.M., Zhang, X.Y., Yin, F., Liu, C.L.: Robust classification with convolutional prototype learning. In: CVPR (2018)
Yu, X., Franchi, G., Aldea, E.: SLURP: Side learning uncertainty for regression problems. In: BMVC (2021)
Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J.: Pyramid scene parsing network. In: CVPR (2017)
Acknowledgements
This work was performed using HPC resources from GENCI-IDRIS (Grant 2020-AD011011970) and (Grant 2021-AD011011970R1) and Saclay-IA computing platform.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Franchi, G., Yu, X., Bursuc, A., Aldea, E., Dubuisson, S., Filliat, D. (2022). Latent Discriminant Deterministic Uncertainty. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13672. Springer, Cham. https://doi.org/10.1007/978-3-031-19775-8_15
Download citation
DOI: https://doi.org/10.1007/978-3-031-19775-8_15
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-19774-1
Online ISBN: 978-3-031-19775-8
eBook Packages: Computer ScienceComputer Science (R0)