Skip to main content

Collaborating Domain-Shared and Target-Specific Feature Clustering for Cross-domain 3D Action Recognition

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13664))

Included in the following conference series:

Abstract

In this work, we consider the problem of cross-domain 3D action recognition in the open-set setting, which has been rarely explored before. Specifically, there is a source domain and a target domain that contain the skeleton sequences with different styles and categories, and our purpose is to cluster the target data by utilizing the labeled source data and unlabeled target data. For such a challenging task, this paper presents a novel approach dubbed CoDT to collaboratively cluster the domain-shared features and target-specific features. CoDT consists of two parallel branches. One branch aims to learn domain-shared features with supervised learning in the source domain, while the other is to learn target-specific features using contrastive learning in the target domain. To cluster the features, we propose an online clustering algorithm that enables simultaneous promotion of robust pseudo label generation and feature clustering. Furthermore, to leverage the complementarity of domain-shared features and target-specific features, we propose a novel collaborative clustering strategy to enforce pair-wise relationship consistency between the two branches. We conduct extensive experiments on multiple cross-domain 3D action recognition datasets, and the results demonstrate the effectiveness of our method. Code is at https://github.com/canbaoburen/CoDT.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    In fact, as proven in [66], even if the exact number of ground-truth categories is unknown, we can overcluster to a larger amount of clusters.

References

  1. Asano, Y.M., Rupprecht, C., Vedaldi, A.: Self-labelling via simultaneous clustering and representation learning. In: ICLR (2020)

    Google Scholar 

  2. Ben-David, S., Blitzer, J., Crammer, K., Kulesza, A., Pereira, F., Vaughan, J.W.: A theory of learning from different domains. Mach. Learn. 151–175 (2009). https://doi.org/10.1007/s10994-009-5152-4

  3. Ben-David, S., Blitzer, J., Crammer, K., Pereira, F., et al.: Analysis of representations for domain adaptation. In: NIPS (2007)

    Google Scholar 

  4. Blum, A., Mitchell, T.: Combining labeled and unlabeled data with co-training. In: COLT, pp. 92–100 (1998)

    Google Scholar 

  5. Cao, Z., Simon, T., Wei, S.E., Sheikh, Y.: Realtime multi-person 2d pose estimation using part affinity fields. In: CVPR (2017)

    Google Scholar 

  6. Caron, M., Bojanowski, P., Joulin, A., Douze, M.: Deep clustering for unsupervised learning of visual features. In: ECCV (2018)

    Google Scholar 

  7. Caron, M., Bojanowski, P., Mairal, J., Joulin, A.: Unsupervised pre-training of image features on non-curated data. In: ICCV (2019)

    Google Scholar 

  8. Caron, M., Misra, I., Mairal, J., Goyal, P., Bojanowski, P., Joulin, A.: Unsupervised learning of visual features by contrasting cluster assignments. In: NIPS (2020)

    Google Scholar 

  9. Carreira, J., Noland, E., Hillier, C., Zisserman, A.: A short note on the kinetics-700 human action dataset. arXiv preprint arXiv:1907.06987 (2019)

  10. Chang, J., Wang, L., Meng, G., Xiang, S., Pan, C.: Deep adaptive image clustering. In: ICCV (2017)

    Google Scholar 

  11. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. In: ICML (2020)

    Google Scholar 

  12. Chen, X., Fan, H., Girshick, R., He, K.: Improved baselines with momentum contrastive learning. arXiv preprint arXiv:2003.04297 (2020)

  13. Cui, S., Wang, S., Zhuo, J., Su, C., Huang, Q., Tian, Q.: Gradually vanishing bridge for adversarial domain adaptation. In: CVPR (2020)

    Google Scholar 

  14. Cuturi, M.: Sinkhorn distances: Lightspeed computation of optimal transport. In: NIPS (2013)

    Google Scholar 

  15. Deng, W., Zheng, L., Ye, Q., Kang, G., Yang, Y., Jiao, J.: Image-image domain adaptation with preserved self-similarity and domain-dissimilarity for person re-identification. In: CVPR (2018)

    Google Scholar 

  16. Doersch, C., Gupta, A., Efros, A.A.: Unsupervised visual representation learning by context prediction. In: ICCV (2015)

    Google Scholar 

  17. Fan, H., Zheng, L., Yan, C., Yang, Y.: Unsupervised person re-identification: clustering and fine-tuning. ACM Trans. Multimedia Comput. Commun. Appl. 14(4), 1–18 (2018)

    Article  Google Scholar 

  18. Fankhauser, P., Bloesch, M., Rodriguez, D., Kaestner, R., Hutter, M., Siegwart, R.: Kinect v2 for mobile robot navigation: Evaluation and modeling. In: ICAR (2015)

    Google Scholar 

  19. Fini, E., Sangineto, E., Lathuilière, S., Zhong, Z., Nabi, M., Ricci, E.: A unified objective for novel class discovery. In: ICCV (2021)

    Google Scholar 

  20. Ganin, Y., et al.: Domain-adversarial training of neural networks. J. Mach. Learn. Res. 17(1), 2030–2096 (2016)

    MathSciNet  Google Scholar 

  21. Ge, Y., Chen, D., Li, H.: Mutual mean-teaching: pseudo label refinery for unsupervised domain adaptation on person re-identification. In: ICLR (2019)

    Google Scholar 

  22. Ghifary, M., Kleijn, W.B., Zhang, M., Balduzzi, D.: Domain generalization for object recognition with multi-task autoencoders. In: ICCV (2015)

    Google Scholar 

  23. Grill, J.B., et al.: Bootstrap your own latent: a new approach to self-supervised learning. In: NIPS (2020)

    Google Scholar 

  24. Guo, Y., et al.: A broader study of cross-domain few-shot learning. In: ECCV (2020)

    Google Scholar 

  25. Gupta, P., et al.: Quo vadis, skeleton action recognition? Int. J. Comput. Vision 129(7), 2097–2112 (2021)

    Article  Google Scholar 

  26. Han, B., et al.: Co-teaching: robust training of deep neural networks with extremely noisy labels. In: NIPS (2018)

    Google Scholar 

  27. Han, K., Rebuffi, S.A., Ehrhardt, S., Vedaldi, A., Zisserman, A.: Automatically discovering and learning new visual categories with ranking statistics. In: ICLR (2019)

    Google Scholar 

  28. He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised visual representation learning. In: CVPR (2020)

    Google Scholar 

  29. Hornik, K., Feinerer, I., Kober, M., Buchta, C.: Spherical k-means clustering. J. Stat. Softw. 50, 1–22 (2012)

    Article  Google Scholar 

  30. Huang, J., Gong, S., Zhu, X.: Deep semantic clustering by partition confidence maximisation. In: CVPR (2020)

    Google Scholar 

  31. Huang, Y., Peng, P., Jin, Y., Xing, J., Lang, C., Feng, S.: Domain adaptive attention model for unsupervised cross-domain person re-identification. In: AAAI (2019)

    Google Scholar 

  32. Islam, A., Chen, C.F., Panda, R., Karlinsky, L., Feris, R., Radke, R.J.: Dynamic distillation network for cross-domain few-shot recognition with unlabeled data. In: NIPS (2021)

    Google Scholar 

  33. Islam, A., Chen, C.F., Panda, R., Karlinsky, L., Radke, R., Feris, R.: A broad study on the transferability of visual representations with contrastive learning. In: ICCV (2021)

    Google Scholar 

  34. Ji, X., Henriques, J.F., Vedaldi, A.: Invariant information clustering for unsupervised image classification and segmentation. In: ICCV (2019)

    Google Scholar 

  35. Ke, Q., Bennamoun, M., An, S., Sohel, F., Boussaid, F.: A new representation of skeleton sequences for 3d action recognition. In: CVPR (2017)

    Google Scholar 

  36. Khosla, P., et al.: Supervised contrastive learning. In: NIPS (2020)

    Google Scholar 

  37. Kocabas, M., Athanasiou, N., Black, M.J.: Vibe: Video inference for human body pose and shape estimation. In: CVPR (2020)

    Google Scholar 

  38. Kundu, J.N., Gor, M., Uppala, P.K., Radhakrishnan, V.B.: Unsupervised feature learning of human actions as trajectories in pose embedding manifold. In: WACV (2019)

    Google Scholar 

  39. Laine, S., Aila, T.: Temporal ensembling for semi-supervised learning. In: ICLR (2016)

    Google Scholar 

  40. Li, B., Li, X., Zhang, Z., Wu, F.: Spatio-temporal graph routing for skeleton-based action recognition. In: AAAI (2019)

    Google Scholar 

  41. Li, C., Zhong, Q., Xie, D., Pu, S.: Skeleton-based action recognition with convolutional neural networks. In: 2017 IEEE International Conference on Multimedia & Expo Workshops, pp. 597–600. IEEE (2017)

    Google Scholar 

  42. Li, J., Li, G., Shi, Y., Yu, Y.: Cross-domain adaptive clustering for semi-supervised domain adaptation. In: CVPR (2021)

    Google Scholar 

  43. Li, J., Zhang, Y., Wang, Z., Tu, K.: Semantic-aware representation learning via probability contrastive loss. arXiv preprint arXiv:2111.06021 (2021)

  44. Li, L., Wang, M., Ni, B., Wang, H., Yang, J., Zhang, W.: 3d human action representation learning via cross-view consistency pursuit. In: CVPR (2021)

    Google Scholar 

  45. Lin, L., Song, S., Yang, W., Liu, J.: Ms2l: multi-task self-supervised learning for skeleton based action recognition. In: ACMMM (2020)

    Google Scholar 

  46. Lin, S., Li, H., Li, C.T., Kot, A.C.: Multi-task mid-level feature alignment network for unsupervised cross-dataset person re-identification. In: BMVC (2018)

    Google Scholar 

  47. Liu, C., Hu, Y., Li, Y., Song, S., Liu, J.: Pku-mmd: a large scale benchmark for continuous multi-modal human action understanding. arXiv preprint arXiv:1703.07475 (2017)

  48. Liu, J., Shahroudy, A., Perez, M., Wang, G., Duan, L.Y., Kot, A.C.: NTU RGB+ D 120: a large-scale benchmark for 3d human activity understanding. IEEE Trans. Pattern Anal. Mach. Intell. 42(10), 2684–2701 (2019)

    Article  Google Scholar 

  49. Liu, X., Zhang, S.: Domain adaptive person re-identification via coupling optimization. In: ACMMM (2020)

    Google Scholar 

  50. Liu, Z., Zhang, H., Chen, Z., Wang, Z., Ouyang, W.: Disentangling and unifying graph convolutions for skeleton-based action recognition. In: CVPR (2020)

    Google Scholar 

  51. Mekhazni, D., Bhuiyan, A., Ekladious, G., Granger, E.: Unsupervised domain adaptation in the dissimilarity space for person re-identification. In: ECCV (2020)

    Google Scholar 

  52. Misra, I., Maaten, L.V.D.: Self-supervised learning of pretext-invariant representations. In: CVPR (2020)

    Google Scholar 

  53. Nie, Q., Liu, Z., Liu, Y.: Unsupervised 3d human pose representation with viewpoint and pose disentanglement. In: ECCV (2020)

    Google Scholar 

  54. Park, S., et al.: Improving unsupervised image clustering with robust learning. In: CVPR (2021)

    Google Scholar 

  55. Pathak, D., Krahenbuhl, P., Donahue, J., Darrell, T., Efros, A.A.: Context encoders: feature learning by inpainting. In: CVPR (2016)

    Google Scholar 

  56. Phoo, C.P., Hariharan, B.: Self-training for few-shot transfer across extreme task differences. In: ICLR (2020)

    Google Scholar 

  57. Qiao, S., Shen, W., Zhang, Z., Wang, B., Yuille, A.: Deep co-training for semi-supervised image recognition. In: ECCV (2018)

    Google Scholar 

  58. Shahroudy, A., Liu, J., Ng, T.T., Wang, G.: NTU RGB+ D: a large scale dataset for 3d human activity analysis. In: CVPR (2016)

    Google Scholar 

  59. Shi, L., Zhang, Y., Cheng, J., Lu, H.: Two-stream adaptive graph convolutional networks for skeleton-based action recognition. In: CVPR (2019)

    Google Scholar 

  60. Sohn, K., et al.: Fixmatch: simplifying semi-supervised learning with consistency and confidence. In: NIPS (2020)

    Google Scholar 

  61. Song, S., Lan, C., Xing, J., Zeng, W., Liu, J.: Spatio-temporal attention-based LSTM networks for 3d action recognition and detection. IEEE Trans. Image Process. 27(7), 3459–3471 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  62. Su, K., Liu, X., Shlizerman, E.: Predict & cluster: unsupervised skeleton based action recognition. In: CVPR (2020)

    Google Scholar 

  63. Su, Y., Lin, G., Wu, Q.: Self-supervised 3d skeleton action representation learning with motion consistency and continuity. In: ICCV (2021)

    Google Scholar 

  64. Tarvainen, A., Valpola, H.: Mean teachers are better role models: weight-averaged consistency targets improve semi-supervised deep learning results. In: NIPS (2017)

    Google Scholar 

  65. Tseng, H.Y., Lee, H.Y., Huang, J.B., Yang, M.H.: Cross-domain few-shot classification via learned feature-wise transformation. In: ICLR (2019)

    Google Scholar 

  66. Van Gansbeke, W., Vandenhende, S., Georgoulis, S., Proesmans, M., Van Gool, L.: Scan: learning to classify images without labels. In: ECCV (2020)

    Google Scholar 

  67. Wang, T., Isola, P.: Understanding contrastive representation learning through alignment and uniformity on the hypersphere. In: ICML (2020)

    Google Scholar 

  68. Wei, L., Zhang, S., Gao, W., Tian, Q.: Person transfer GAN to bridge domain gap for person re-identification. In: CVPR (2018)

    Google Scholar 

  69. Wilson, G., Cook, D.J.: A survey of unsupervised deep domain adaptation. ACM Trans. Intell. Syst. Technol. 11(5), 1–46 (2020)

    Article  Google Scholar 

  70. Xie, J., Girshick, R., Farhadi, A.: Unsupervised deep embedding for clustering analysis. In: ICML (2016)

    Google Scholar 

  71. Xie, Q., Luong, M.T., Hovy, E., Le, Q.V.: Self-training with noisy student improves imagenet classification. In: CVPR (2020)

    Google Scholar 

  72. Xu, S., Rao, H., Hu, X., Hu, B.: Prototypical contrast and reverse prediction: unsupervised skeleton based action recognition. arXiv preprint arXiv:2011.07236 (2020)

  73. Yan, H., Ding, Y., Li, P., Wang, Q., Xu, Y., Zuo, W.: Mind the class weight bias: weighted maximum mean discrepancy for unsupervised domain adaptation. In: CVPR (2017)

    Google Scholar 

  74. Yan, S., Xiong, Y., Lin, D.: Spatial temporal graph convolutional networks for skeleton-based action recognition. In: AAAI (2018)

    Google Scholar 

  75. Yang, D., Wang, Y., Dantcheva, A., Garattoni, L., Francesca, G., Bremond, F.: Unik: a unified framework for real-world skeleton-based action recognition. In: BMVC (2021)

    Google Scholar 

  76. Yang, S., Liu, J., Lu, S., Er, M.H., Kot, A.C.: Skeleton cloud colorization for unsupervised 3d action representation learning. In: ICCV (2021)

    Google Scholar 

  77. Yao, F.: Cross-domain few-shot learning with unlabelled data. arXiv preprint arXiv:2101.07899 (2021)

  78. Zhai, Y., Ye, Q., Lu, S., Jia, M., Ji, R., Tian, Y.: Multiple expert brainstorming for domain adaptive person re-identification. In: ECCV (2020)

    Google Scholar 

  79. Zhang, P., Lan, C., Xing, J., Zeng, W., Xue, J., Zheng, N.: View adaptive recurrent neural networks for high performance human action recognition from skeleton data. In: ICCV (2017)

    Google Scholar 

  80. Zhang, P., Lan, C., Zeng, W., Xing, J., Xue, J., Zheng, N.: Semantics-guided neural networks for efficient skeleton-based human action recognition. In: CVPR (2020)

    Google Scholar 

  81. Zhang, R., Isola, P., Efros, A.A.: Colorful image colorization. In: ECCV (2016)

    Google Scholar 

  82. Zhang, X., Cao, J., Shen, C., You, M.: Self-training with progressive augmentation for unsupervised cross-domain person re-identification. In: ICCV (2019)

    Google Scholar 

  83. Zhang, Z.: Microsoft kinect sensor and its effect. IEEE Multimedia 19(2), 4–10 (2012)

    Article  Google Scholar 

  84. Zhao, B., Han, K.: Novel visual category discovery with dual ranking statistics and mutual knowledge distillation. In: NIPS (2021)

    Google Scholar 

  85. Zhao, F., Liao, S., Xie, G.S., Zhao, J., Zhang, K., Shao, L.: Unsupervised domain adaptation with noise resistible mutual-training for person re-identification. In: ECCV (2020)

    Google Scholar 

  86. Zhao, L., et al.: Learning view-disentangled human pose representation by contrastive cross-view mutual information maximization. In: CVPR (2021)

    Google Scholar 

  87. Zheng, K., Liu, W., He, L., Mei, T., Luo, J., Zha, Z.J.: Group-aware label transfer for domain adaptive person re-identification. In: CVPR (2021)

    Google Scholar 

  88. Zheng, N., Wen, J., Liu, R., Long, L., Dai, J., Gong, Z.: Unsupervised representation learning with long-term dynamics for skeleton based action recognition. In: AAAI (2018)

    Google Scholar 

  89. Zhong, Z., Zheng, L., Luo, Z., Li, S., Yang, Y.: Invariance matters: exemplar memory for domain adaptive person re-identification. In: CVPR (2019)

    Google Scholar 

Download references

Acknowledgement

This work is supported by the National Natural Science Foundation of China under Grant No. 62176246 and No. 61836008.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zilei Wang .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 12628 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, Q., Wang, Z. (2022). Collaborating Domain-Shared and Target-Specific Feature Clustering for Cross-domain 3D Action Recognition. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13664. Springer, Cham. https://doi.org/10.1007/978-3-031-19772-7_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19772-7_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19771-0

  • Online ISBN: 978-3-031-19772-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics