Skip to main content

Iwin: Human-Object Interaction Detection via Transformer with Irregular Windows

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Abstract

This paper presents a new vision Transformer, named Iwin Transformer, which is specifically designed for human-object interaction (HOI) detection, a detailed scene understanding task involving a sequential process of human/object detection and interaction recognition. Iwin Transformer is a hierarchical Transformer which progressively performs token representation learning and token agglomeration within irregular windows. The irregular windows, achieved by augmenting regular grid locations with learned offsets, 1) eliminate redundancy in token representation learning, which leads to efficient human/object detection, and 2) enable the agglomerated tokens to align with humans/objects with different shapes, which facilitates the acquisition of highly-abstracted visual semantics for interaction recognition. The effectiveness and efficiency of Iwin Transformer are verified on the two standard HOI detection benchmark datasets, HICO-DET and V-COCO. Results show our method outperforms existing Transformers-based methods by large margins (3.7 mAP gain on HICO-DET and 2.0 mAP gain on V-COCO) with fewer training epochs (\(0.5 \times \)).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 213–229. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_13

    Chapter  Google Scholar 

  2. Chao, Y.W., Liu, Y., Liu, X., Zeng, H., Deng, J.: Learning to detect human-object interactions. In: WACV (2018)

    Google Scholar 

  3. Chen, M., Liao, Y., Liu, S., Chen, Z., Wang, F., Qian, C.: Reformulating hoi detection as adaptive set prediction. In: CVPR (2021)

    Google Scholar 

  4. Dai, J., et al.: Deformable convolutional networks. In: ICCV (2017)

    Google Scholar 

  5. Gao, C., Xu, J., Zou, Y., Huang, J.B.: Drg: Dual relation graph for human-object interaction detection. In: ECCV (2020)

    Google Scholar 

  6. Gao, C., Zou, Y., Huang, J.B.: iCAN: instance-centric attention network for human-object interaction detection. In: BMVC (2018)

    Google Scholar 

  7. Gkioxari, G., Girshick, R., Dollár, P., He, K.: Detecting and recognizing human-object interactions. In: CVPR (2018)

    Google Scholar 

  8. Gupta, S., Malik, J.: Visual semantic role labeling. arXiv preprint arXiv:1505.04474 (2015)

  9. Gupta, T., Schwing, A., Hoiem, D.: No-frills human-object interaction detection: factorization, layout encodings, and training techniques. In: ICCV (2019)

    Google Scholar 

  10. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask r-cnn. In: ICCV. pp. 2961–2969 (2017)

    Google Scholar 

  11. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR (2016)

    Google Scholar 

  12. Hou, Z., Peng, X., Qiao, Yu., Tao, D.: Visual compositional learning for human-object interaction detection. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12360, pp. 584–600. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58555-6_35

    Chapter  Google Scholar 

  13. Hou, Z., Yu, B., Qiao, Y., Peng, X., Tao, D.: Affordance transfer learning for human-object interaction detection. In: CVPR (2021)

    Google Scholar 

  14. Kim, B., Choi, T., Kang, J., Kim, H.J.: UnionDet: union-level detector towards real-time human-object interaction detection. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12360, pp. 498–514. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58555-6_30

    Chapter  Google Scholar 

  15. Kim, B., Lee, J., Kang, J., Kim, E.S., Kim, H.J.: Hotr: end-to-end human-object interaction detection with transformers. In: CVPR (2021)

    Google Scholar 

  16. Kim, D.-J., Sun, X., Choi, J., Lin, S., Kweon, I.S.: Detecting human-object interactions with action co-occurrence priors. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12366, pp. 718–736. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58589-1_43

    Chapter  Google Scholar 

  17. Kuhn, H.W.: The hungarian method for the assignment problem. Naval Res. Logist. Q. 2(1–2), 83–97 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  18. Li, Y.L., et al.: Detailed 2d–3d joint representation for human-object interaction. In: CVPR (2020)

    Google Scholar 

  19. Li, Y.L., et al.: Pastanet: toward human activity knowledge engine. In: CVPR (2020)

    Google Scholar 

  20. Li, Y.L., et al.: Transferable interactiveness knowledge for human-object interaction detection. In: CVPR (2019)

    Google Scholar 

  21. Liao, Y., Liu, S., Wang, F., Chen, Y., Qian, C., Feng, J.: Ppdm: parallel point detection and matching for real-time human-object interaction detection. In: CVPR (2020)

    Google Scholar 

  22. Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: CVPR (2017)

    Google Scholar 

  23. Lin, T.Y., et al.: Microsoft coco: Common objects in context. In: ECCV (2014)

    Google Scholar 

  24. Lin, X., Zou, Q., Xu, X.: Action-guided attention mining and relation reasoning network for human-object interaction detection. In: IJCAI (2020)

    Google Scholar 

  25. Liu, Y., Chen, Q., Zisserman, A.: Amplifying key cues for human-object-interaction detection. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12359, pp. 248–265. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58568-6_15

    Chapter  Google Scholar 

  26. Liu, Z., et al.: Swin transformer: hierarchical vision transformer using shifted windows. In: ICCV (2021)

    Google Scholar 

  27. Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: ICLR (2017)

    Google Scholar 

  28. MacQueen, J., et al.: Some methods for classification and analysis of multivariate observations. In: Proceedings of the fifth Berkeley Symposium on Mathematical Statistics and Probability (1967)

    Google Scholar 

  29. Nair, V., Hinton, G.E.: Rectified linear units improve restricted boltzmann machines. In: ICML (2010)

    Google Scholar 

  30. Peyre, J., Laptev, I., Schmid, C., Sivic, J.: Detecting unseen visual relations using analogies. In: ICCV (2019)

    Google Scholar 

  31. Qi, S., Wang, W., Jia, B., Shen, J., Zhu, S.C.: Learning human-object interactions by graph parsing neural networks. In: ECCV (2018)

    Google Scholar 

  32. Radford, A., et al.: Learning transferable visual models from natural language supervision. In: International Conference on Machine Learning, pp. 8748–8763. PMLR (2021)

    Google Scholar 

  33. Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: towards real-time object detection with region proposal networks. In: NIPS (2015)

    Google Scholar 

  34. Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: a metric and a loss for bounding box regression. In: CVPR (2019)

    Google Scholar 

  35. Tamura, M., Ohashi, H., Yoshinaga, T.: Qpic: query-based pairwise human-object interaction detection with image-wide contextual information. In: CVPR (2021)

    Google Scholar 

  36. Ulutan, O., Iftekhar, A., Manjunath, B.S.: Vsgnet: spatial attention network for detecting human object interactions using graph convolutions. In: CVPR (2020)

    Google Scholar 

  37. Vaswani, A., et al.: Attention is all you need. In: NIPS (2017)

    Google Scholar 

  38. Wan, B., Zhou, D., Liu, Y., Li, R., He, X.: Pose-aware multi-level feature network for human object interaction detection. In: ICCV (2019)

    Google Scholar 

  39. Wang, H., Zheng, W., Yingbiao, L.: Contextual heterogeneous graph network for human-object interaction detection. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12362, pp. 248–264. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58520-4_15

    Chapter  Google Scholar 

  40. Wang, T., et al.: Deep contextual attention for human-object interaction detection. In: ICCV (2019)

    Google Scholar 

  41. Wang, T., Yang, T., Danelljan, M., Khan, F.S., Zhang, X., Sun, J.: Learning human-object interaction detection using interaction points. In: CVPR (2020)

    Google Scholar 

  42. Xu, B., Li, J., Wong, Y., Zhao, Q., Kankanhalli, M.S.: Interact as you intend: Intention-driven human-object interaction detection. In: TMM (2019)

    Google Scholar 

  43. Yang, D., Zou, Y.: A graph-based interactive reasoning for human-object interaction detection. In: IJCAI (2020)

    Google Scholar 

  44. Zhang, A., et al.: Mining the benefits of two-stage and one-stage hoi detection. NIPs 34, 17209–17220 (2021)

    Google Scholar 

  45. Zhang, F.Z., Campbell, D., Gould, S.: Spatially conditioned graphs for detecting human-object interactions. In: ICCV (2021)

    Google Scholar 

  46. Zhong, X., Ding, C., Qu, X., Tao, D.: Polysemy deciphering network for robust human-object interaction detection. In: ICCV (2021)

    Google Scholar 

  47. Zhong, X., Qu, X., Ding, C., Tao, D.: Glance and gaze: inferring action-aware points for one-stage human-object interaction detection. In: CVPR (2021)

    Google Scholar 

  48. Zhou, P., Chi, M.: Relation parsing neural network for human-object interaction detection. In: ICCV (2019)

    Google Scholar 

  49. Zhou, T., Wang, W., Qi, S., Ling, H., Shen, J.: Cascaded human-object interaction recognition. In: CVPR (2020)

    Google Scholar 

  50. Zhu, X., Su, W., Lu, L., Li, B., Wang, X., Dai, J.: Deformable detr: deformable transformers for end-to-end object detection. In: ICLR (2020)

    Google Scholar 

  51. Zou, C., et al.: End-to-end human object interaction detection with hoi transformer. In: CVPR (2021)

    Google Scholar 

Download references

Acknowledgements

This work was supported by NSFC 61831015, National Key R &D Program of China 2021YFE0206700, NSFC 62176159, Natural Science Foundation of Shanghai 21ZR1432200 and Shanghai Municipal Science and Technology Major Project 2021SHZDZX0102.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guangtao Zhai or Wei Shen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tu, D., Min, X., Duan, H., Guo, G., Zhai, G., Shen, W. (2022). Iwin: Human-Object Interaction Detection via Transformer with Irregular Windows. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13664. Springer, Cham. https://doi.org/10.1007/978-3-031-19772-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19772-7_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19771-0

  • Online ISBN: 978-3-031-19772-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics