Abstract
The prediction of human gaze behavior is important for building human-computer interaction systems that can anticipate the user’s attention. Computer vision models have been developed to predict the fixations made by people as they search for target objects. But what about when the target is not in the image? Equally important is to know how people search when they cannot find a target, and when they would stop searching. In this paper, we propose a data-driven computational model that addresses the search-termination problem and predicts the scanpath of search fixations made by people searching for targets that do not appear in images. We model visual search as an imitation learning problem and represent the internal knowledge that the viewer acquires through fixations using a novel state representation that we call Foveated Feature Maps (FFMs). FFMs integrate a simulated foveated retina into a pretrained ConvNet that produces an in-network feature pyramid, all with minimal computational overhead. Our method integrates FFMs as the state representation in inverse reinforcement learning. Experimentally, we improve the state of the art in predicting human target-absent search behavior on the COCO-Search18 dataset. Code is available at: https://github.com/cvlab-stonybrook/Target-absent-Human-Attention.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Note that it is not our aim to perfectly approximate the information extracted by a human foveated retina.
- 2.
Both cIG and cNSS can only be computed for auto-regressive probabilistic models (our method, IRL, detector and fixation heuristic).
References
Akbas, E., Eckstein, M.P.: Object detection through search with a foveated visual system. PLoS Comput. Biol. 13(10), e1005743 (2017)
Alexander, R.G., Zelinsky, G.J.: Visual similarity effects in categorical search. J. Vis. 11(8), 9–9 (2011)
Ba, J.L., Kiros, J.R., Hinton, G.E.: Layer normalization. arXiv preprint arXiv:1607.06450 (2016)
Borji, A., Tavakoli, H.R., Sihite, D.N., Itti, L.: Analysis of scores, datasets, and models in visual saliency prediction. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 921–928 (2013)
Bylinskii, Z., Judd, T., Oliva, A., Torralba, A., Durand, F.: What do different evaluation metrics tell us about saliency models? IEEE Trans. Pattern Anal. Mach. Intell. 41(3), 740–757 (2018)
Caesar, H., Uijlings, J., Ferrari, V.: Coco-stuff: thing and stuff classes in context. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1209–1218 (2018)
Chen, X., Jiang, M., Zhao, Q.: Predicting human scanpaths in visual question answering. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 10876–10885 (2021)
Chen, Y., Yang, Z., Ahn, S., Samaras, D., Hoai, M., Zelinsky, G.: Coco-search18 fixation dataset for predicting goal-directed attention control. Sci. Rep. 11(1), 1–11 (2021)
Chen, Y., et al.: Characterizing target-absent human attention. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops, pp. 5031–5040 (2022)
Chun, M.M., Wolfe, J.M.: Just say no: how are visual searches terminated when there is no target present? Cogn. Psychol. 30(1), 39–78 (1996)
Eckstein, M.P.: Visual search: a retrospective. J. Vis. 11(5), 14–14 (2011)
Garg, D., Chakraborty, S., Cundy, C., Song, J., Ermon, S.: IQ-learn: inverse soft-Q learning for imitation. In: Advances in Neural Information Processing Systems, vol. 34 (2021)
Geirhos, R., Rubisch, P., Michaelis, C., Bethge, M., Wichmann, F.A., Brendel, W.: Imagenet-trained CNNs are biased towards texture; increasing shape bias improves accuracy and robustness. In: International Conference on Learning Representations (2019). https://openreview.net/forum?id=Bygh9j09KX
Haarnoja, T., Tang, H., Abbeel, P., Levine, S.: Reinforcement learning with deep energy-based policies. In: International Conference on Machine Learning, pp. 1352–1361. PMLR (2017)
Haarnoja, T., Zhou, A., Abbeel, P., Levine, S.: Soft actor-critic: off-policy maximum entropy deep reinforcement learning with a stochastic actor. In: International Conference on Machine Learning, pp. 1861–1870. PMLR (2018)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
Hendrycks, D., Dietterich, T.: Benchmarking neural network robustness to common corruptions and perturbations. In: International Conference on Learning Representations (2019). https://openreview.net/forum?id=HJz6tiCqYm
Ho, J., Ermon, S.: Generative adversarial imitation learning. In: Advances in Neural Information Processing Systems, vol. 29 (2016)
Jaramillo-Avila, U., Anderson, S.R.: Foveated image processing for faster object detection and recognition in embedded systems using deep convolutional neural networks. In: Martinez-Hernandez, U., et al. (eds.) Living Machines 2019. LNCS (LNAI), vol. 11556, pp. 193–204. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-24741-6_17
Jiang, M., Huang, S., Duan, J., Zhao, Q.: Salicon: saliency in context. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2015
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: ICLR (Poster) (2015)
Kirillov, A., Girshick, R., He, K., Dollár, P.: Panoptic feature pyramid networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6399–6408 (2019)
Kostrikov, I., Agrawal, K.K., Dwibedi, D., Levine, S., Tompson, J.: Discriminator-actor-critic: addressing sample inefficiency and reward bias in adversarial imitation learning. In: International Conference on Learning Representations (2019). https://openreview.net/forum?id=Hk4fpoA5Km
Kümmerer, M., Bethge, M.: State-of-the-art in human scanpath prediction. arXiv preprint arXiv:2102.12239 (2021)
Kümmerer, M., Theis, L., Bethge, M.: Deep gaze I: boosting saliency prediction with feature maps trained on imagenet. arXiv preprint arXiv:1411.1045 (2014)
Kümmerer, M., Wallis, T.S., Bethge, M.: Information-theoretic model comparison unifies saliency metrics. Proc. Natl. Acad. Sci. 112(52), 16054–16059 (2015)
Law, H., Deng, J.: Cornernet: detecting objects as paired keypoints. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 734–750 (2018)
Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017)
Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2980–2988 (2017)
Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48
Linardos, A., Kümmerer, M., Press, O., Bethge, M.: DeepGaze IIE: calibrated prediction in and out-of-domain for state-of-the-art saliency modeling. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 12919–12928 (2021)
Najemnik, J., Geisler, W.S.: Optimal eye movement strategies in visual search. Nature 434(7031), 387–391 (2005)
Needleman, S.B., Wunsch, C.D.: A general method applicable to the search for similarities in the amino acid sequence of two proteins. J. Mol. Biol. 48(3), 443–453 (1970)
Perry, J.S., Geisler, W.S.: Gaze-contingent real-time simulation of arbitrary visual fields. In: Human Vision and Electronic Imaging VII, vol. 4662, pp. 57–70. International Society for Optics and Photonics (2002)
Petersen, S.E., Posner, M.I.: The attention system of the human brain: 20 years after. Annu. Rev. Neurosci. 35, 73–89 (2012)
Posner, M.I.: Attention: the mechanisms of consciousness. Proc. Natl. Acad. Sci. 91(16), 7398–7403 (1994)
Posner, M.I., Petersen, S.E.: The attention system of the human brain. Annu. Rev. Neurosci. 13(1), 25–42 (1990)
Rashidi, S., Ehinger, K., Turpin, A., Kulik, L.: Optimal visual search based on a model of target detectability in natural images. In: Advances in Neural Information Processing Systems, vol. 33 (2020)
Russakovsky, O., et al.: Imagenet large scale visual recognition challenge. Int. J. Comput. Vision 115(3), 211–252 (2015)
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)
Wolfe, J.M.: Guided search 6.0: an updated model of visual search. Psychon. Bull. Rev. 28(4), 1060–1092 (2021)
Wolfe, J.: Visual search. In: Pashler, H. (ed.) Attention (1998)
Yang, Z., et al.: Predicting goal-directed human attention using inverse reinforcement learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 193–202 (2020)
Zelinsky, G., et al.: Benchmarking gaze prediction for categorical visual search. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (2019)
Zelinsky, G.J.: A theory of eye movements during target acquisition. Psychol. Rev. 115(4), 787 (2008)
Zelinsky, G.J., et al.: Predicting goal-directed attention control using inverse-reinforcement learning. Neurons Behav. Data Anal. Theory 2021 (2021)
Zelinsky, G.J., Peng, Y., Samaras, D.: Eye can read your mind: decoding gaze fixations to reveal categorical search targets. J. Vis. 13(14), 10–10 (2013)
Zhou, X., Wang, D., Krähenbühl, P.: Objects as points. arXiv preprint arXiv:1904.07850 (2019)
Acknowledgements
The authors would like to thank Jianyuan Deng for her help in result visualization and statistical analysis. This project was partially supported by US National Science Foundation Awards IIS-1763981 and IIS-2123920, the Partner University Fund, the SUNY2020 Infrastructure Transportation Security Center, and a gift from Adobe.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Yang, Z., Mondal, S., Ahn, S., Zelinsky, G., Hoai, M., Samaras, D. (2022). Target-Absent Human Attention. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13664. Springer, Cham. https://doi.org/10.1007/978-3-031-19772-7_4
Download citation
DOI: https://doi.org/10.1007/978-3-031-19772-7_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-19771-0
Online ISBN: 978-3-031-19772-7
eBook Packages: Computer ScienceComputer Science (R0)