Abstract
Predicting pedestrian movement is critical for human behavior analysis and also for safe and efficient human-agent interactions. However, despite significant advancements, it is still challenging for existing approaches to capture the uncertainty and multimodality of human navigation decision making. In this paper, we propose SocialVAE, a novel approach for human trajectory prediction. The core of SocialVAE is a timewise variational autoencoder architecture that exploits stochastic recurrent neural networks to perform prediction, combined with a social attention mechanism and a backward posterior approximation to allow for better extraction of pedestrian navigation strategies. We show that SocialVAE improves current state-of-the-art performance on several pedestrian trajectory prediction benchmarks, including the ETH/UCY benchmark, Stanford Drone Dataset, and SportVU NBA movement dataset.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Alahi, A., Goel, K., Ramanathan, V., Robicquet, A., Fei-Fei, L., Savarese, S.: Social LSTM: human trajectory prediction in crowded spaces. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 961–971 (2016)
Amirian, J., Hayet, J.B., Pettré, J.: Social ways: learning multi-modal distributions of pedestrian trajectories with GANs. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (2019)
Bae, I., Park, J.H., Jeon, H.G.: Non-probability sampling network for stochastic human trajectory prediction. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6477–6487 (2022)
Ballan, L., Castaldo, F., Alahi, A., Palmieri, F., Savarese, S.: Knowledge transfer for scene-specific motion prediction. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 697–713. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_42
Bayer, J., Osendorfer, C.: Learning stochastic recurrent networks. arXiv preprint arXiv:1411.7610 (2014)
Becker, S., Hug, R., Hübner, W., Arens, M.: An evaluation of trajectory prediction approaches and notes on the TrajNet benchmark. arXiv preprint arXiv:1805.07663 (2018)
van den Berg, J., Guy, S.J., Lin, M., Manocha, D.: Reciprocal n-body collision avoidance. In: International Symposium of Robotics Research, pp. 3–19 (2011)
Brown, T., et al.: Language models are few-shot learners. Adv. Neural. Inf. Process. Syst. 33, 1877–1901 (2020)
Caesar, H., et al.: nuScenes: a multimodal dataset for autonomous driving. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11618–11628 (2020)
Cao, Z., Gao, H., Mangalam, K., Cai, Q.-Z., Vo, M., Malik, J.: Long-term human motion prediction with scene context. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 387–404. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_23
Chandra, R., Bhattacharya, U., Bera, A., Manocha, D.: Traphic: trajectory prediction in dense and heterogeneous traffic using weighted interactions. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2019)
Cho, K., et al.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. arXiv preprint arXiv:1406.1078 (2014)
Chung, J., Kastner, K., Dinh, L., Goel, K., Courville, A.C., Bengio, Y.: A recurrent latent variable model for sequential data. In: Advances in Neural Information Processing Systems 28 (2015)
Fraccaro, M., Sønderby, S.K., Paquet, U., Winther, O.: Sequential neural models with stochastic layers. In: Advances in Neural Information Processing Systems 29 (2016)
Giuliari, F., Hasan, I., Cristani, M., Galasso, F.: Transformer networks for trajectory forecasting. In: IEEE International Conference on Pattern Recognition, pp. 10335–10342 (2021)
Goyal, A., Sordoni, A., Côté, M.A., Ke, N.R., Bengio, Y.: Z-forcing: Training stochastic recurrent networks. In: Advances in Neural Information Processing Systems 30 (2017)
Gupta, A., Johnson, J., Fei-Fei, L., Savarese, S., Alahi, A.: Social GAN: socially acceptable trajectories with generative adversarial networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2255–2264 (2018)
Helbing, D., Farkas, I., Vicsek, T.: Simulating dynamical features of escape panic. Nature 407(6803), 487–490 (2000)
Helbing, D., Molnar, P.: Social force model for pedestrian dynamics. Phys. Rev. E 51(5), 4282 (1995)
Ivanovic, B., Pavone, M.: The trajectron: probabilistic multi-agent trajectory modeling with dynamic spatiotemporal graphs. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 2375–2384 (2019)
Karamouzas, I., Skinner, B., Guy, S.J.: Universal power law governing pedestrian interactions. Phys. Rev. Lett. 113(23), 238701 (2014)
Kim, K., Lee, D., Essa, I.: Gaussian process regression flow for analysis of motion trajectories. In: IEEE International Conference on Computer Vision, pp. 1164–1171 (2011)
Kingma, D.P., Welling, M.: Auto-encoding variational bayes. In: Bengio, Y., LeCun, Y. (eds.) International Conference on Learning Representations (2014)
Kitani, K.M., Ziebart, B.D., Bagnell, J.A., Hebert, M.: Activity forecasting. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7575, pp. 201–214. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33765-9_15
Kochkov, D., Smith, J.A., Alieva, A., Wang, Q., Brenner, M.P., Hoyer, S.: Machine learning-accelerated computational fluid dynamics. Proc. National Acad. Sci. 118(21) (2021)
Lerner, A., Chrysanthou, Y., Lischinski, D.: Crowds by example. In: Computer Graphics Forum, vol. 26, pp. 655–664. Wiley Online Library (2007)
Linou, K., Linou, D., de Boer, M.: NBA player movements. github.com/linouk23/NBA-Player-Movements (2016)
Makansi, O., et al.: You mostly walk alone: analyzing feature attribution in trajectory prediction. In: International Conference on Learning Representations (2022)
Mangalam, K., An, Y., Girase, H., Malik, J.: From goals, waypoints & paths to long term human trajectory forecasting. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 15233–15242 (2021)
Mangalam, K., Girase, H., Agarwal, S., Lee, K.-H., Adeli, E., Malik, J., Gaidon, A.: It is not the journey but the destination: endpoint conditioned trajectory prediction. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12347, pp. 759–776. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58536-5_45
Marchetti, F., Becattini, F., Seidenari, L., Bimbo, A.D.: Mantra: memory augmented networks for multiple trajectory prediction. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7143–7152 (2020)
Olivier, A.H., Marin, A., Crétual, A., Pettré, J.: Minimal predicted distance: a common metric for collision avoidance during pairwise interactions between walkers. Gait & Posture 36(3), 399–404 (2012)
Van den Oord, A., Kalchbrenner, N., Espeholt, L., Vinyals, O., Graves, A., et al.: Conditional image generation with PixelCNN decoders. In: Advances in Neural Information Processing Systems 29 (2016)
Pellegrini, S., Ess, A., Schindler, K., Van Gool, L.: You’ll never walk alone: modeling social behavior for multi-target tracking. In: IEEE International Conference on Computer Vision, pp. 261–268 (2009)
Pradhan, N., Burg, T., Birchfield, S.: Robot crowd navigation using predictive position fields in the potential function framework. In: Proceedings of the 2011 American control conference, pp. 4628–4633. IEEE (2011)
Ravuri, S., et al.: Skilful precipitation nowcasting using deep generative models of radar. Nature 597(7878), 672–677 (2021)
Robicquet, A., Sadeghian, A., Alahi, A., Savarese, S.: Learning social etiquette: human trajectory understanding in crowded scenes. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 549–565. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46484-8_33
Sadeghian, A., Kosaraju, V., Sadeghian, A., Hirose, N., Rezatofighi, H., Savarese, S.: Sophie: an attentive GAN for predicting paths compliant to social and physical constraints. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1349–1358 (2019)
Sadeghian, A., Legros, F., Voisin, M., Vesel, R., Alahi, A., Savarese, S.: Car-Net: clairvoyant attentive recurrent network. In: European Conference on Computer Vision, pp. 151–167 (2018)
Salzmann, T., Ivanovic, B., Chakravarty, P., Pavone, M.: Trajectron++: dynamically-feasible trajectory forecasting with heterogeneous data. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12363, pp. 683–700. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58523-5_40
Sanchez-Gonzalez, A., Godwin, J., Pfaff, T., Ying, R., Leskovec, J., Battaglia, P.: Learning to simulate complex physics with graph networks. In: International Conference on Machine Learning, pp. 8459–8468 (2020)
Schöller, C., Aravantinos, V., Lay, F., Knoll, A.C.: What the constant velocity model can teach us about pedestrian motion prediction. IEEE Robotics Autom. Lett. 5(2), 1696–1703 (2020)
Sohn, K., Lee, H., Yan, X.: Learning structured output representation using deep conditional generative models. Adv. Neural. Inf. Process. Syst. 28, 3483–3491 (2015)
Trautman, P., Krause, A.: Unfreezing the robot: navigation in dense, interacting crowds. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 797–803 (2010)
Van Oord, A., Kalchbrenner, N., Kavukcuoglu, K.: Pixel recurrent neural networks. In: International Conference on Machine Learning, pp. 1747–1756 (2016)
Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems 30 (2017)
Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph attention networks. arXiv preprint arXiv:1710.10903 (2017)
Vemula, A., Muelling, K., Oh, J.: Social attention: modeling attention in human crowds. In: IEEE international Conference on Robotics and Automation, pp. 4601–4607 (2018)
Wang, C., Wang, Y., Xu, M., Crandall, D.: Stepwise goal-driven networks for trajectory prediction. IEEE Robot. Autom. Lett. (2022)
Wang, J.M., Fleet, D.J., Hertzmann, A.: Gaussian process dynamical models for human motion. IEEE Trans. Pattern Anal. Mach. Intell. 30(2), 283–298 (2007)
Weyn, J.A., Durran, D.R., Caruana, R.: Can machines learn to predict weather? using deep learning to predict gridded 500-HPA geopotential height from historical weather data. J. Adv. Model. Earth Syst. 11(8), 2680–2693 (2019)
Xu, C., Mao, W., Zhang, W., Chen, S.: Remember intentions: retrospective-memory-based trajectory prediction. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6488–6497 (2022)
Yamaguchi, K., Berg, A.C., Ortiz, L.E., Berg, T.L.: Who are you with and where are you going? In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1345–1352 (2011)
Yao, Y., Atkins, E., Johnson-Roberson, M., Vasudevan, R., Du, X.: BiTraP: bi-directional pedestrian trajectory prediction with multi-modal goal estimation. IEEE Robot. Autom. Lett. 6(2), 1463–1470 (2021)
Yu, C., Ma, X., Ren, J., Zhao, H., Yi, S.: Spatio-temporal graph transformer networks for pedestrian trajectory prediction. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12357, pp. 507–523. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58610-2_30
Yuan, Y., Weng, X., Ou, Y., Kitani, K.: Agentformer: agent-aware transformers for socio-temporal multi-agent forecasting. arXiv preprint arXiv:2103.14023 (2021)
Yue, Y., Lucey, P., Carr, P., Bialkowski, A., Matthews, I.: Learning fine-grained spatial models for dynamic sports play prediction. In: IEEE International Conference on Data Mining, pp. 670–679 (2014)
Zamboni, S., Kefato, Z.T., Girdzijauskas, S., Norén, C., Dal Col, L.: Pedestrian trajectory prediction with convolutional neural networks. Pattern Recogn. 121, 108252 (2022)
Acknowledgements
This work was supported by the National Science Foundation under Grant No. IIS-2047632.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Xu, P., Hayet, JB., Karamouzas, I. (2022). SocialVAE: Human Trajectory Prediction Using Timewise Latents. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13664. Springer, Cham. https://doi.org/10.1007/978-3-031-19772-7_30
Download citation
DOI: https://doi.org/10.1007/978-3-031-19772-7_30
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-19771-0
Online ISBN: 978-3-031-19772-7
eBook Packages: Computer ScienceComputer Science (R0)