Abstract
Self-attention based Transformer models have demonstrated impressive results for image classification and object detection, and more recently for video understanding. Inspired by this success, we investigate the application of Transformer networks for temporal action localization in videos. To this end, we present ActionFormer—a simple yet powerful model to identify actions in time and recognize their categories in a single shot, without using action proposals or relying on pre-defined anchor windows. ActionFormer combines a multiscale feature representation with local self-attention, and uses a light-weighted decoder to classify every moment in time and estimate the corresponding action boundaries. We show that this orchestrated design results in major improvements upon prior works. Without bells and whistles, ActionFormer achieves 71.0% mAP at tIoU = 0.5 on THUMOS14, outperforming the best prior model by 14.1 absolute percentage points. Further, ActionFormer demonstrates strong results on ActivityNet 1.3 (36.6% average mAP) and EPIC-Kitchens 100 (+13.5% average mAP over prior works). Our code is available at https://github.com/happyharrycn/actionformer_release.
C.-L. Zhang—Work was done when visiting UW Madison.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Without loss of clarity, we drop the index of the pyramid \(\ell \).
References
Alwassel, H., Giancola, S., Ghanem, B.: TSP: Temporally-sensitive pretraining of video encoders for localization tasks. In: International Conference on Computer Vision Workshops, pp. 1–11 (2021)
Arnab, A., Dehghani, M., Heigold, G., Sun, C., Lučić, M., Schmid, C.: ViViT: a video vision transformer. In: International Conference on Computer Vision (2021)
Bai, Y., Wang, Y., Tong, Y., Yang, Y., Liu, Q., Liu, J.: Boundary content graph neural network for temporal action proposal generation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12373, pp. 121–137. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58604-1_8
Beltagy, I., Peters, M.E., Cohan, A.: LongFormer: the long-document transformer. arXiv:2004.05150 (2020)
Bodla, N., Singh, B., Chellappa, R., Davis, L.S.: Soft-NMS-improving object detection with one line of code. In: International Conference on Computer Vision, pp. 5561–5569 (2017)
Buch, S., Escorcia, V., Ghanem, B., Niebles Carlos, J.: End-to-end, single-stream temporal action detection in untrimmed videos. In: British Machine Vision Conference, pp. 93.1–93.12 (2017)
Buch, S., Escorcia, V., Shen, C., Ghanem, B., Carlos Niebles, J.: SST: Single-stream temporal action proposals. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2911–2920 (2017)
Caba Heilbron, F., Carlos Niebles, J., Ghanem, B.: Fast temporal activity proposals for efficient detection of human actions in untrimmed videos. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1914–1923 (2016)
Caba Heilbron, F., Escorcia, V., Ghanem, B., Carlos Niebles, J.: ActivityNet: a large-scale video benchmark for human activity understanding. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 961–970 (2015)
Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 213–229. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_13
Carreira, J., Zisserman, A.: Quo vadis, action recognition? A new model and the Kinetics dataset. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 4724–4733 (2017)
Chang, S., Wang, P., Wang, F., Li, H., Feng, J.: Augmented transformer with adaptive graph for temporal action proposal generation. arXiv preprint arXiv:2103.16024 (2021)
Chao, Y.W., Vijayanarasimhan, S., Seybold, B., Ross, D.A., Deng, J., Sukthankar, R.: Rethinking the Faster-RCNN architecture for temporal action localization. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1130–1139 (2018)
Cheng, B., Schwing, A.G., Kirillov, A.: Per-pixel classification is not all you need for semantic segmentation. In: Advances in Neural Information Processing Systems (2021)
Choromanski, K., et al.: Rethinking attention with performers. In: International Conference on Learning Representations (2021)
Dai, X., Chen, Y., Yang, J., Zhang, P., Yuan, L., Zhang, L.: Dynamic DETR: end-to-end object detection with dynamic attention. In: International Conference on Computer Vision, pp. 2988–2997 (2021)
Damen, D., et al.: Rescaling egocentric vision. arXiv preprint arXiv:2006.13256 (2020)
Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: North American Chapter of the Association for Computational Linguistics, pp. 4171–4186 (2019)
Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. In: International Conference on Learning Representations (2021)
Duan, K., Bai, S., Xie, L., Qi, H., Huang, Q., Tian, Q.: CenterNet: keypoint triplets for object detection. In: International Conference on Computer Vision, pp. 6569–6578 (2019)
Escorcia, V., Caba Heilbron, F., Niebles, J.C., Ghanem, B.: DAPs: deep action proposals for action understanding. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9907, pp. 768–784. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46487-9_47
Fan, H., Xiong, B., Mangalam, K., Li, Y., Yan, Z., Malik, J., Feichtenhofer, C.: Multiscale vision transformers. In: International Conference on Computer Vision (2021)
Feichtenhofer, C., Fan, H., Malik, J., He, K.: SlowFast networks for video recognition. In: International Conference on Computer Vision, pp. 6202–6211 (2019)
Girdhar, R., Carreira, J., Doersch, C., Zisserman, A.: Video action transformer network. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 244–253 (2019)
Gong, G., Zheng, L., Mu, Y.: Scale matters: temporal scale aggregation network for precise action localization in untrimmed videos. In: International Conference on Multimedia and Expo, pp. 1–6. IEEE (2020)
Idrees, H., et al.: The THUMOS challenge on action recognition for videos “in the wild’’. Comput. Vis. Image Under. 155, 1–23 (2017)
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: International Conference on Learning Representations, pp. 1–11 (2015)
Li, S., et al.: Enhancing the locality and breaking the memory bottleneck of transformer on time series forecasting. In: Advances in Neural Information Processing Systems, vol. 32 (2019)
Li, X., et al.: Deep concept-wise temporal convolutional networks for action localization. In: Proceedings of the 28th ACM International Conference on Multimedia, pp. 4004–4012 (2020)
Lin, C., et al.: Fast learning of temporal action proposal via dense boundary generator. In: AAAI, pp. 11499–11506 (2020)
Lin, C., et al.: Learning salient boundary feature for anchor-free temporal action localization. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 3320–3329 (2021)
Lin, T., Liu, X., Li, X., Ding, E., Wen, S.: BMN: boundary-matching network for temporal action proposal generation. In: International Conference on Computer Vision, pp. 3889–3898 (2019)
Lin, T., Zhao, X., Shou, Z.: Single shot temporal action detection. In: ACM International Conference on Multimedia, pp. 988–996 (2017)
Lin, T., Zhao, X., Su, H., Wang, C., Yang, M.: BSN: boundary sensitive network for temporal action proposal generation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11208, pp. 3–21. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01225-0_1
Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017)
Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: IEEE Conference on Computer Vision, pp. 2980–2988 (2017)
Liu, D., Jiang, T., Wang, Y.: Completeness modeling and context separation for weakly supervised temporal action localization. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1298–1307 (2019)
Liu, L., Liu, X., Gao, J., Chen, W., Han, J.: Understanding the difficulty of training transformers. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 5747–5763 (2020)
Liu, Q., Wang, Z.: Progressive boundary refinement network for temporal action detection. In: AAAI, vol. 34, pp. 11612–11619 (2020)
Liu, W., et al.: SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2
Liu, X., Hu, Y., Bai, S., Ding, F., Bai, X., Torr, P.H.: Multi-shot temporal event localization: a benchmark. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 12596–12606 (2021)
Liu, X., Wang, Q., Hu, Y., Tang, X., Bai, S., Bai, X.: End-to-end temporal action detection with transformer. arXiv preprint arXiv:2106.10271 (2021)
Liu, Y., Ma, L., Zhang, Y., Liu, W., Chang, S.F.: Multi-granularity generator for temporal action proposal. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 3604–3613 (2019)
Liu, Z., et al.: Swin transformer: hierarchical vision transformer using shifted windows. In: IEEE Conference on Computer Vision (2021)
Liu, Z., et al.: Video swin transformer. arXiv preprint arXiv:2106.13230 (2021)
Long, F., Yao, T., Qiu, Z., Tian, X., Luo, J., Mei, T.: Gaussian temporal awareness networks for action localization. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 344–353 (2019)
Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning library. In: Advances in Neural Information Processing Systems, vol. 32 (2019)
Qing, Z., et al.: Temporal context aggregation network for temporal action proposal refinement. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 485–494 (2021)
Qiu, Z., Yao, T., Mei, T.: Learning spatio-temporal representation with pseudo-3D residual networks. In: IEEE Conference on Computer Vision , pp. 5533–5541 (2017)
Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: a metric and a loss for bounding box regression. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 658–666 (2019)
Shou, Z., Chan, J., Zareian, A., Miyazawa, K., Chang, S.F.: CDC: convolutional-de-convolutional networks for precise temporal action localization in untrimmed videos. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 5734–5743 (2017)
Shou, Z., Wang, D., Chang, S.F.: Temporal action localization in untrimmed videos via multi-stage CNNs. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1049–1058 (2016)
Sridhar, D., Quader, N., Muralidharan, S., Li, Y., Dai, P., Lu, J.: Class semantics-based attention for action detection. In: IEEE Conference on Computer Vision, pp. 13739–13748 (2021)
Tan, J., Tang, J., Wang, L., Wu, G.: Relaxed transformer decoders for direct action proposal generation. In: IEEE Conference on Computer Vision, pp. 13526–13535 (2021)
Tian, Z., Shen, C., Chen, H., He, T.: FCOS: fully convolutional one-stage object detection. In: IEEE Conference on Computer Vision, pp. 9627–9636 (2019)
Touvron, H., Cord, M., Douze, M., Massa, F., Sablayrolles, A., Jégou, H.: Training data-efficient image transformers & distillation through attention. In: International Conference on Machine Learning, pp. 10347–10357 (2021)
Touvron, H., Cord, M., Sablayrolles, A., Synnaeve, G., Jégou, H.: Going deeper with image transformers. In: IEEE Conference on Computer Vision (2021)
Tran, D., Wang, H., Torresani, L., Ray, J., LeCun, Y., Paluri, M.: A closer look at spatiotemporal convolutions for action recognition. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 6450–6459 (2018)
Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, pp. 5998–6008 (2017)
Wang, L., et al.: Temporal segment networks: towards good practices for deep action recognition. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 20–36. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46484-8_2
Wang, L., Yang, H., Wu, W., Yao, H., Huang, H.: Temporal action proposal generation with transformers. arXiv preprint arXiv:2105.12043 (2021)
Wang, S., Li, B., Khabsa, M., Fang, H., Ma, H.: LinFormer: self-attention with linear complexity. arXiv preprint arXiv:2006.04768 (2020)
Wang, T., Yuan, L., Chen, Y., Feng, J., Yan, S.: PnP-DETR: towards efficient visual analysis with transformers. In: IEEE Conference on Computer Vision, pp. 4661–4670 (2021)
Wang, W., et al.: Pyramid vision transformer: a versatile backbone for dense prediction without convolutions. In: IEEE Conference on Computer Vision (2021)
Wang, Y., et al.: End-to-end video instance segmentation with transformers. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 8741–8750 (2021)
Xiao, T., Singh, M., Mintun, E., Darrell, T., Dollár, P., Girshick, R.: Early convolutions help transformers see better. In: Advances in Neural Information Processing Systems (2021)
Xie, E., Wang, W., Yu, Z., Anandkumar, A., Alvarez, J.M., Luo, P.: SegFormer: simple and efficient design for semantic segmentation with transformers. In: Advances in Neural Information Processing Systems (2021)
Xiong, Y., et al.: Nyströmformer: a nyström-based algorithm for approximating self-attention. In: AAAI, vol. 35, pp. 14138–14148 (2021)
Xu, M., Zhao, C., Rojas, D.S., Thabet, A., Ghanem, B.: G-TAD: sub-graph localization for temporal action detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 10156–10165 (2020)
Yang, J., et al.: Focal self-attention for local-global interactions in vision transformers. In: Advances in Neural Information Processing Systems (2021)
Yang, L., Peng, H., Zhang, D., Fu, J., Han, J.: Revisiting anchor mechanisms for temporal action localization. IEEE Trans. Image Process. 29, 8535–8548 (2020)
Yang, Z., Qin, J., Huang, D.: AcgNet: action complement graph network for weakly-supervised temporal action localization. In: AAAI, vol. 36–3, pp. 3090–3098 (2022)
Yuan, L., et al.: Tokens-to-token ViT: training vision transformers from scratch on ImageNet. In: IEEE Conference on Computer Vision (2021)
Zeng, R., et al.: Graph convolutional networks for temporal action localization. In: IEEE Conference on Computer Vision, pp. 7094–7103 (2019)
Zeng, R., Xu, H., Huang, W., Chen, P., Tan, M., Gan, C.: Dense regression network for video grounding. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 10287–10296 (2020)
Zhang, S., Chi, C., Yao, Y., Lei, Z., Li, S.Z.: Bridging the gap between anchor-based and anchor-free detection via adaptive training sample selection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 9759–9768 (2020)
Zhao, C., Thabet, A.K., Ghanem, B.: Video self-stitching graph network for temporal action localization. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 13658–13667 (2021)
Zhao, P., Xie, L., Ju, C., Zhang, Y., Wang, Y., Tian, Q.: Bottom-up temporal action localization with mutual regularization. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12353, pp. 539–555. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58598-3_32
Zhao, Y., Xiong, Y., Wang, L., Wu, Z., Tang, X., Lin, D.: Temporal action detection with structured segment networks. In: IEEE Conference on Computer Vision, pp. 2914–2923 (2017)
Zhao, Y., et al.: CUHK & ETHZ & SIAT submission to ActivityNet challenge 2017. arXiv preprint arXiv:1710.08011 (2017)
Zheng, Z., Wang, P., Liu, W., Li, J., Ye, R., Ren, D.: Distance-IoU loss: faster and better learning for bounding box regression. In: AAAI (2020)
Zhu, X., Su, W., Lu, L., Li, B., Wang, X., Dai, J.: Deformable DETR: deformable transformers for end-to-end object detection. In: International Conference on Learning Representations, pp. 1–11 (2021)
Zhu, Z., Tang, W., Wang, L., Zheng, N., Hua, G.: Enriching local and global contexts for temporal action localization. In: International Conference on Computer Vision, pp. 13516–13525 (2021)
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Zhang, CL., Wu, J., Li, Y. (2022). ActionFormer: Localizing Moments of Actions with Transformers. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13664. Springer, Cham. https://doi.org/10.1007/978-3-031-19772-7_29
Download citation
DOI: https://doi.org/10.1007/978-3-031-19772-7_29
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-19771-0
Online ISBN: 978-3-031-19772-7
eBook Packages: Computer ScienceComputer Science (R0)