Abstract
Some group activities, such as team sports and choreographed dances, involve closely coupled interaction between participants. Here we investigate the tasks of inferring and predicting participant behavior, in terms of motion paths and actions, under such conditions. We narrow the problem to that of estimating how a set target participants react to the behavior of other observed participants. Our key idea is to model the spatio-temporal relations among participants in a manner that is robust to error accumulation during frame-wise inference and prediction. We propose a novel Entry-Flipped Transformer (EF-Transformer), which models the relations of participants by attention mechanisms on both spatial and temporal domains. Unlike typical transformers, we tackle the problem of error accumulation by flipping the order of query, key, and value entries, to increase the importance and fidelity of observed features in the current frame. Comparative experiments show that our EF-Transformer achieves the best performance on a newly-collected tennis doubles dataset, a Ceilidh dance dataset, and two pedestrian datasets. Furthermore, it is also demonstrated that our EF-Transformer is better at limiting accumulated errors and recovering from wrong estimations.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aizeboje, J.: Ceilidh dance recognition from an overhead camera, Msc, Thesis of University of Edinburgh (2016)
Alahi, A., Goel, K., Ramanathan, V., Robicquet, A., Fei-Fei, L., Savarese, S.: Social LSTM: human trajectory prediction in crowded spaces. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 961–971 (2016)
Aliakbarian, M.S., Saleh, F., Salzmann, M., Fernando, B., Petersson, L., Andersson, L.: Encouraging LSTMS to anticipate actions very early. In: IEEE International Conference on Computer Vision (ICCV), pp. 280–289 (2017)
Amer, M.R., Lei, P., Todorovic, S.: HiRF: hierarchical random field for collective activity recognition in videos. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8694, pp. 572–585. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10599-4_37
Azar, S.M., Atigh, M.G., Nickabadi, A., Alahi, A.: Convolutional relational machine for group activity recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7892–7901 (2019)
Bagautdinov, T., Alahi, A., Fleuret, F., Fua, P., Savarese, S.: Social scene understanding: End-to-end multi-person action localization and collective activity recognition. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017)
Becker, S., Hug, R., Hübner, W., Arens, M.: RED: a simple but effective baseline predictor for the TrajNet benchmark. In: Leal-Taixé, L., Roth, S. (eds.) ECCV 2018. LNCS, vol. 11131, pp. 138–153. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11015-4_13
Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 213–229. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_13
Carreira, J., Zisserman, A.: Quo vadis, action recognition? a new model and the kinetics dataset. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2017)
Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)
Fernando, T., Denman, S., Sridharan, S., Fookes, C.: Soft+hardwired attention: An LSTM framework for human trajectory prediction and abnormal event detection. Neural Netw. 108, 466–478 (2018)
Gavrilyuk, K., Sanford, R., Javan, M., Snoek, C.G.: Actor-transformers for group activity recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 839–848 (2020)
Girdhar, R., Carreira, J., Doersch, C., Zisserman, A.: Video action transformer network. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 244–253 (2019)
Gupta, A., Johnson, J., Fei-Fei, L., Savarese, S., Alahi, A.: Social GAN: socially acceptable trajectories with generative adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2255–2264 (2018)
Hu, H., Gu, J., Zhang, Z., Dai, J., Wei, Y.: Relation networks for object detection. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)
Ibrahim, M.S., Mori, G.: Hierarchical relational networks for group activity recognition and retrieval. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11207, pp. 742–758. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01219-9_44
Ibrahim, M.S., Muralidharan, S., Deng, Z., Vahdat, A., Mori, G.: A hierarchical deep temporal model for group activity recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1971–1980 (2016)
Lea, C., Flynn, M.D., Vidal, R., Reiter, A., Hager, G.D.: Temporal convolutional networks for action segmentation and detection. In: proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 156–165 (2017)
Lerner, A., Chrysanthou, Y., Lischinski, D.: Crowds by example. Comput. Graph. Forum 26(3), 655–664 (2007). https://doi.org/10.1111/j.1467-8659.2007.01089.x
Li, J., Liu, X., Zhang, W., Zhang, M., Song, J., Sebe, N.: Spatio-temporal attention networks for action recognition and detection. IEEE Trans. Multimedia 22(11), 2990–3001 (2020)
Liang, J., Jiang, L., Carlos Niebles, J., Hauptmann, A.G., Fei-Fei, L.: Peeking into the future: Predicting future person activities and locations in videos. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2019)
Pellegrini, S., Ess, A., Schindler, K., Van Gool, L.: You’ll never walk alone: modeling social behavior for multi-target tracking. In: 2009 IEEE 12th International Conference on Computer Vision, pp. 261–268. IEEE (2009)
Qiu, Z., Yao, T., Mei, T.: Learning spatio-temporal representation with pseudo-3D residual networks. In: IEEE International Conference on Computer Vision (ICCV), pp. 5534–5542. IEEE (2017)
Sadeghian, A., Kosaraju, V., Sadeghian, A., Hirose, N., Rezatofighi, H., Savarese, S.: Sophie: An attentive GAN for predicting paths compliant to social and physical constraints. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1349–1358 (2019)
Sutskever, I., Vinyals, O., Le, Q.V.: Sequence to sequence learning with neural networks. arXiv preprint arXiv:1409.3215 (2014)
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. In: Advances in Neural Information Processing Systems (NIPS), pp. 6000–6010 (2017)
Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: ICLR (2018)
Vemula, A., Muelling, K., Oh, J.: Social attention: modeling attention in human crowds. In: 2018 IEEE International Conference on Robotics and Automation (ICRA), pp. 4601–4607. IEEE (2018)
Wang, X., Girshick, R., Gupta, A., He, K.: Non-local neural networks. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2018)
Wu, J., Wang, L., Wang, L., Guo, J., Wu, G.: Learning actor relation graphs for group activity recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9964–9974 (2019)
Xu, M., Gao, M., Chen, Y.T., Davis, L.S., Crandall, D.J.: Temporal recurrent networks for online action detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5532–5541 (2019)
Xu, Y., Piao, Z., Gao, S.: Encoding crowd interaction with deep neural network for pedestrian trajectory prediction. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5275–5284 (2018)
Yan, R., Xie, L., Tang, J., Shu, X., Tian, Q.: HiGCIN: hierarchical graph-based cross inference network for group activity recognition. In: IEEE Transactions on Pattern Analysis and Machine Intelligence (2020)
Yan, S., Xiong, Y., Lin, D.: Spatial temporal graph convolutional networks for skeleton-based action recognition. In: Proceedings of the AAAI Conference On Artificial Intelligence (2018)
Yu, C., Ma, X., Ren, J., Zhao, H., Yi, S.: Spatio-temporal graph transformer networks for pedestrian trajectory prediction. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12357, pp. 507–523. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58610-2_30
Yuan, Y., Liang, X., Wang, X., Yeung, D.Y., Gupta, A.: Temporal dynamic graph LSTM for action-driven video object detection. In: Proceedings of the IEEE International Conference On Computer Vision, pp. 1801–1810 (2017)
Yue, Y., Lucey, P., Carr, P., Bialkowski, A., Matthews, I.: Learning fine-grained spatial models for dynamic sports play prediction. In: 2014 IEEE International Conference on Data Mining, pp. 670–679. IEEE (2014)
Zeng, R., et al.: Graph convolutional networks for temporal action localization. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 7094–7103 (2019)
Zeng, Z., Ji, Q.: Knowledge based activity recognition with dynamic Bayesian network. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6316, pp. 532–546. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15567-3_39
Zhang, P., Ouyang, W., Zhang, P., Xue, J., Zheng, N.: SR-LSTM: State refinement for LSTM towards pedestrian trajectory prediction. In: CVPR (2019)
Zhao, R., Wang, K., Su, H., Ji, Q.: Bayesian graph convolution LSTM for skeleton based action recognition. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6882–6892 (2019)
Zhu, X., Su, W., Lu, L., Li, B., Wang, X., Dai, J.: Deformable DETR: deformable transformers for end-to-end object detection. In: ICLR (2021)
Acknowledgements
This study is supported under the RIE2020 Industry Alignment Fund - Industry Collaboration Projects (IAF-ICP) Funding Initiative, as well as cash and in-kind contribution from Singapore Telecommunications Limited (Singtel), through Singtel Cognitive and Artificial Intelligence Lab for Enterprises (SCALE@NTU).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Hu, B., Cham, TJ. (2022). Entry-Flipped Transformer for Inference and Prediction of Participant Behavior. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13664. Springer, Cham. https://doi.org/10.1007/978-3-031-19772-7_26
Download citation
DOI: https://doi.org/10.1007/978-3-031-19772-7_26
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-19771-0
Online ISBN: 978-3-031-19772-7
eBook Packages: Computer ScienceComputer Science (R0)