Skip to main content

Scale-Aware Spatio-Temporal Relation Learning for Video Anomaly Detection

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13664))

Included in the following conference series:

Abstract

Recent progress in video anomaly detection (VAD) has shown that feature discrimination is the key to effectively distinguishing anomalies from normal events. We observe that many anomalous events occur in limited local regions, and the severe background noise increases the difficulty of feature learning. In this paper, we propose a scale-aware weakly supervised learning approach to capture local and salient anomalous patterns from the background, using only coarse video-level labels as supervision. We achieve this by segmenting frames into non-overlapping patches and then capturing inconsistencies among different regions through our patch spatial relation (PSR) module, which consists of self-attention mechanisms and dilated convolutions. To address the scale variation of anomalies and enhance the robustness of our method, a multi-scale patch aggregation method is further introduced to enable local-to-global spatial perception by merging features of patches with different scales. Considering the importance of temporal cues, we extend the relation modeling from the spatial domain to the spatio-temporal domain with the help of the existing video temporal relation network to effectively encode the spatio-temporal dynamics in the video. Experimental results show that our proposed method achieves new state-of-the-art performance on UCF-Crime and ShanghaiTech benchmarks. Code are available at https://github.com/nutuniv/SSRL.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cai, R., Zhang, H., Liu, W., Gao, S., Hao, Z.: Appearance-motion memory consistency network for video anomaly detection. In: Thirty-Fifth AAAI Conference on Artificial Intelligence, pp. 938–946 (2021)

    Google Scholar 

  2. Carreira, J., Zisserman, A.: Quo Vadis, action recognition? A new model and the kinetics dataset. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4724–4733 (2017)

    Google Scholar 

  3. Fan, Y., Wen, G., Li, D., Qiu, S., Levine, M.D., Xiao, F.: Video anomaly detection and localization via gaussian mixture fully convolutional variational autoencoder. Comput. Vis. Image Underst. 195, 102920 (2020)

    Article  Google Scholar 

  4. Feng, J., Hong, F., Zheng, W.: MIST: multiple instance self-training framework for video anomaly detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14009–14018 (2021)

    Google Scholar 

  5. Georgescu, M., Barbalau, A., Ionescu, R.T., Khan, F.S., Popescu, M., Shah, M.: Anomaly detection in video via self-supervised and multi-task learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12742–12752 (2021)

    Google Scholar 

  6. Hasan, M., Choi, J., Neumann, J., Roy-Chowdhury, A.K., Davis, L.S.: Learning temporal regularity in video sequences. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 733–742 (2016)

    Google Scholar 

  7. He, L., et al.: End-to-end video object detection with spatial-temporal transformers. CoRR abs/2105.10920 (2021). https://arxiv.org/abs/2105.10920

  8. Kay, W., et al.: The kinetics human action video dataset. arXiv preprint arXiv:1705.06950 (2017)

  9. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: Bengio, Y., LeCun, Y. (eds.) 3rd International Conference on Learning Representations (2015)

    Google Scholar 

  10. Li, S., Liu, F., Jiao, L.: Self-training multi-sequence learning with transformer for weakly supervised video anomaly detection. In: Thirty-Sixth AAAI Conference on Artificial Intelligence (2022)

    Google Scholar 

  11. Liu, K., Ma, H.: Exploring background-bias for anomaly detection in surveillance videos. In: Proceedings of the 27th ACM International Conference on Multimedia, pp. 1490–1499 (2019)

    Google Scholar 

  12. Liu, W., Luo, W., Lian, D., Gao, S.: Future frame prediction for anomaly detection - a new baseline. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6536–6545 (2018)

    Google Scholar 

  13. Liu, Z., et al.: Video swin transformer. arXiv preprint arXiv:2106.13230 (2021)

  14. Liu, Z., Nie, Y., Long, C., Zhang, Q., Li, G.: A hybrid video anomaly detection framework via memory-augmented flow reconstruction and flow-guided frame prediction. CoRR abs/2108.06852 (2021). https://arxiv.org/abs/2108.06852

  15. Lu, C., Shi, J., Jia, J.: Abnormal event detection at 150 FPS in MATLAB. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 2720–2727 (2013)

    Google Scholar 

  16. Lu, Y., Kumar, K.M., Nabavi, S.S., Wang, Y.: Future frame prediction using convolutional VRNN for anomaly detection. In: 16th IEEE International Conference on Advanced Video and Signal Based Surveillance, pp. 1–8 (2019)

    Google Scholar 

  17. Luo, W., Liu, W., Gao, S.: Remembering history with convolutional LSTM for anomaly detection. In: 2017 IEEE International Conference on Multimedia and Expo, pp. 439–444 (2017)

    Google Scholar 

  18. Luo, W., Liu, W., Gao, S.: A revisit of sparse coding based anomaly detection in stacked RNN framework. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 341–349 (2017)

    Google Scholar 

  19. Luo, W., et al.: Video anomaly detection with sparse coding inspired deep neural networks. IEEE Trans. Pattern Anal. Mach. Intell. 43(3), 1070–1084 (2021)

    Article  Google Scholar 

  20. Lv, H., Zhou, C., Cui, Z., Xu, C., Li, Y., Yang, J.: Localizing anomalies from weakly-labeled videos. IEEE Trans. Image Process. 30, 4505–4515 (2021)

    Article  Google Scholar 

  21. Pan, J., Chen, S., Shou, M.Z., Liu, Y., Shao, J., Li, H.: Actor-context-actor relation network for spatio-temporal action localization. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 464–474 (2021)

    Google Scholar 

  22. Park, H., Noh, J., Ham, B.: Learning memory-guided normality for anomaly detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14360–14369 (2020)

    Google Scholar 

  23. Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning library. Adv. Neural Inf. Process. Syst. 32, 8026–8037 (2019)

    Google Scholar 

  24. Ravanbakhsh, M., Nabi, M., Sangineto, E., Marcenaro, L., Regazzoni, C.S., Sebe, N.: Abnormal event detection in videos using generative adversarial nets. In: 2017 IEEE International Conference on Image Processing, pp. 1577–1581 (2017)

    Google Scholar 

  25. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. Adv. Neural Inf. Process. Syst. 28, 91–99 (2015)

    Google Scholar 

  26. Rodrigues, R., Bhargava, N., Velmurugan, R., Chaudhuri, S.: Multi-timescale trajectory prediction for abnormal human activity detection. In: IEEE Winter Conference on Applications of Computer Vision, pp. 2615–2623 (2020)

    Google Scholar 

  27. Song, L., Zhang, S., Yu, G., Sun, H.: TACNet: transition-aware context network for spatio-temporal action detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11987–11995 (2019)

    Google Scholar 

  28. Sultani, W., Chen, C., Shah, M.: Real-world anomaly detection in surveillance videos. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 6479–6488 (2018)

    Google Scholar 

  29. Sun, C., Jia, Y., Hu, Y., Wu, Y.: Scene-aware context reasoning for unsupervised abnormal event detection in videos. In: MM 2020: The 28th ACM International Conference on Multimedia, pp. 184–192 (2020)

    Google Scholar 

  30. Tian, Y., Pang, G., Chen, Y., Singh, R., Verjans, J.W., Carneiro, G.: Weakly-supervised video anomaly detection with robust temporal feature magnitude learning. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2021)

    Google Scholar 

  31. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, pp. 5998–6008 (2017)

    Google Scholar 

  32. Wan, B., Fang, Y., Xia, X., Mei, J.: Weakly supervised video anomaly detection via center-guided discriminative learning. In: IEEE International Conference on Multimedia and Expo, pp. 1–6 (2020)

    Google Scholar 

  33. Wang, J., Cherian, A.: GODS: generalized one-class discriminative subspaces for anomaly detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 8201–8211 (2019)

    Google Scholar 

  34. Wang, J., Cherian, A.: GODS: generalized one-class discriminative subspaces for anomaly detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 8200–8210 (2019)

    Google Scholar 

  35. Wang, X., Girshick, R.B., Gupta, A., He, K.: Non-local neural networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7794–7803 (2018)

    Google Scholar 

  36. Wang, Z., Zou, Y., Zhang, Z.: Cluster attention contrast for video anomaly detection. In: MM 2020: The 28th ACM International Conference on Multimedia, pp. 2463–2471 (2020)

    Google Scholar 

  37. Wu, J., et al.: Weakly-supervised spatio-temporal anomaly detection in surveillance video. In: Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence, pp. 1172–1178 (2021)

    Google Scholar 

  38. Wu, P., Liu, J.: Learning causal temporal relation and feature discrimination for anomaly detection. IEEE Trans. Image Process. 30, 3513–3527 (2021)

    Article  Google Scholar 

  39. Wu, P., et al.: Not only look, but also listen: learning multimodal violence detection under weak supervision. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12375, pp. 322–339. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58577-8_20

    Chapter  Google Scholar 

  40. Xu, D., Ricci, E., Yan, Y., Song, J., Sebe, N.: Learning deep representations of appearance and motion for anomalous event detection. In: Proceedings of the British Machine Vision Conference 2015, pp. 8.1–8.12 (2015)

    Google Scholar 

  41. Xu, J., Cao, Y., Zhang, Z., Hu, H.: Spatial-temporal relation networks for multi-object tracking. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3987–3997 (2019)

    Google Scholar 

  42. Yu, F., Koltun, V.: Multi-scale context aggregation by dilated convolutions. In: 4th International Conference on Learning Representations (2016)

    Google Scholar 

  43. Yu, G., et al.: Cloze test helps: effective video anomaly detection via learning to complete video events. In: MM 2020: The 28th ACM International Conference on Multimedia, pp. 583–591 (2020)

    Google Scholar 

  44. Zaheer, M.Z., Lee, J., Astrid, M., Lee, S.: Old is gold: redefining the adversarially learned one-class classifier training paradigm. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14171–14181 (2020)

    Google Scholar 

  45. Zaheer, M.Z., Mahmood, A., Astrid, M., Lee, S.-I.: CLAWS: clustering assisted weakly supervised learning with normalcy suppression for anomalous event detection. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12367, pp. 358–376. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58542-6_22

    Chapter  Google Scholar 

  46. Zhang, J., Qing, L., Miao, J.: Temporal convolutional network with complementary inner bag loss for weakly supervised anomaly detection. In: 2019 IEEE International Conference on Image Processing, pp. 4030–4034 (2019)

    Google Scholar 

  47. Zhang, Y., Nie, X., He, R., Chen, M., Yin, Y.: Normality learning in multispace for video anomaly detection. IEEE Trans. Circuits Syst. Video Technol. 31(9), 3694–3706 (2021)

    Article  Google Scholar 

  48. Zhao, Y., Deng, B., Shen, C., Liu, Y., Lu, H., Hua, X.S.: Spatio-temporal autoencoder for video anomaly detection. In: Proceedings of the 25th ACM international conference on Multimedia, pp. 1933–1941 (2017)

    Google Scholar 

  49. Zhong, J.X., Li, N., Kong, W., Liu, S., Li, T.H., Li, G.: Graph convolutional label noise cleaner: Train a plug-and-play action classifier for anomaly detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1237–1246 (2019)

    Google Scholar 

  50. Zhou, J.T., Zhang, L., Fang, Z., Du, J., Peng, X., Xiao, Y.: Attention-driven loss for anomaly detection in video surveillance. IEEE Trans. Circuits Syst. Video Technol. 30(12), 4639–4647 (2020)

    Article  Google Scholar 

  51. Zhu, Y., Newsam, S.D.: Motion-aware feature for improved video anomaly detection. In: 30th British Machine Vision Conference 2019, p. 270 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingyu Zeng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, G., Cai, G., Zeng, X., Zhao, R. (2022). Scale-Aware Spatio-Temporal Relation Learning for Video Anomaly Detection. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13664. Springer, Cham. https://doi.org/10.1007/978-3-031-19772-7_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19772-7_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19771-0

  • Online ISBN: 978-3-031-19772-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics