Skip to main content

Few-Shot Action Recognition with Hierarchical Matching and Contrastive Learning

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13664))

Included in the following conference series:

Abstract

Few-shot action recognition aims to recognize actions in test videos based on limited annotated data of target action classes. The dominant approaches project videos into a metric space and classify videos via nearest neighboring. They mainly measure video similarities using global or temporal alignment alone, while an optimum matching should be multi-level. However, the complexity of learning coarse-to-fine matching quickly rises as we focus on finer-grained visual cues, and the lack of detailed local supervision is another challenge. In this work, we propose a hierarchical matching model to support comprehensive similarity measure at global, temporal and spatial levels via a zoom-in matching module. We further propose a mixed-supervised hierarchical contrastive learning (HCL), which not only employs supervised contrastive learning to differentiate videos at different levels, but also utilizes cycle consistency as weak supervision to align discriminative temporal clips or spatial patches. Our model achieves state-of-the-art performance on four benchmarks especially under the most challenging 1-shot recognition setting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Arnab, A., Dehghani, M., Heigold, G., Sun, C., Lučić, M., Schmid, C.: ViViT: a video vision transformer. In: ICCV (2021)

    Google Scholar 

  2. Bertasius, G., Wang, H., Torresani, L.: Is space-time attention all you need for video understanding? In: ICML (2021)

    Google Scholar 

  3. Bishay, M., Zoumpourlis, G., Patras, I.: TARN: temporal attentive relation network for few-shot and zero-shot action recognition. In: BMVC (2019)

    Google Scholar 

  4. Cao, K., Ji, J., Cao, Z., Chang, C.Y., Niebles, J.C.: Few-shot video classification via temporal alignment. In: CVPR (2020)

    Google Scholar 

  5. Carreira, J., Zisserman, A.: Quo Vadis, action recognition? A new model and the kinetics dataset. In: CVPR (2017)

    Google Scholar 

  6. Chen, W.Y., Liu, Y.C., Kira, Z., Wang, Y.C.F., Huang, J.B.: A closer look at few-shot classification. In: ICLR (2019)

    Google Scholar 

  7. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. In: NAACL (2019)

    Google Scholar 

  8. Doersch, C., Gupta, A., Zisserman, A.: CrossTransformers: spatially-aware few-shot transfer. In: NeurIPS (2020)

    Google Scholar 

  9. Dwibedi, D., Aytar, Y., Tompson, J., Sermanet, P., Zisserman, A.: Temporal cycle-consistency learning. In: CVPR (2019)

    Google Scholar 

  10. Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adaptation of deep networks. In: ICML (2017)

    Google Scholar 

  11. Fu, Y., Zhang, L., Wang, J., Fu, Y., Jiang, Y.G.: Depth guided adaptive meta-fusion network for few-shot video recognition. In: ACMMM (2020)

    Google Scholar 

  12. Gidaris, S., Bursuc, A., Komodakis, N., Pérez, P., Cord, M.: Boosting few-shot visual learning with self-supervision. In: ICCV (2019)

    Google Scholar 

  13. Goyal, R., et al.: The “something something” video database for learning and evaluating visual common sense. In: ICCV (2017)

    Google Scholar 

  14. Hadsell, R., Chopra, S., LeCun, Y.: Dimensionality reduction by learning an invariant mapping. In: CVPR (2006)

    Google Scholar 

  15. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR (2016)

    Google Scholar 

  16. Karpathy, A., Toderici, G., Shetty, S., Leung, T., Sukthankar, R., Fei-Fei, L.: Large-scale video classification with convolutional neural networks. In: CVPR (2014)

    Google Scholar 

  17. Khosla, P., et al.: Supervised contrastive learning. arXiv preprint arXiv:2004.11362 (2020)

  18. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: NeurIPS (2012)

    Google Scholar 

  19. Kuehne, H., Jhuang, H., Garrote, E., Poggio, T., Serre, T.: HMDB: a large video database for human motion recognition. In: ICCV (2011)

    Google Scholar 

  20. Kumar Dwivedi, S., Gupta, V., Mitra, R., Ahmed, S., Jain, A.: ProtoGAN: towards few shot learning for action recognition. In: ICCV Workshops (2019)

    Google Scholar 

  21. Laenen, S., Bertinetto, L.: On episodes, prototypical networks, and few-shot learning. In: Thirty-Fifth Conference on Neural Information Processing Systems (2021)

    Google Scholar 

  22. Lake, B., Salakhutdinov, R., Gross, J., Tenenbaum, J.: One shot learning of simple visual concepts. In: CogSci (2011)

    Google Scholar 

  23. Li, W., Wang, L., Xu, J., Huo, J., Gao, Y., Luo, J.: Revisiting local descriptor based image-to-class measure for few-shot learning. In: CVPR (2019)

    Google Scholar 

  24. Liu, C., Xu, C., Wang, Y., Zhang, L., Fu, Y.: An embarrassingly simple baseline to one-shot learning. In: CVPR (2020)

    Google Scholar 

  25. Majumder, O., Ravichandran, A., Maji, S., Polito, M., Bhotika, R., Soatto, S.: Supervised momentum contrastive learning for few-shot classification. arXiv preprint arXiv:2101.11058 (2021)

  26. Miller, E.G., Matsakis, N.E., Viola, P.A.: Learning from one example through shared densities on transforms. In: CVPR (2000)

    Google Scholar 

  27. Misra, I., Maaten, L.v.d.: Self-supervised learning of pretext-invariant representations. In: CVPR (2020)

    Google Scholar 

  28. Oord, A.v.d., Li, Y., Vinyals, O.: Representation learning with contrastive predictive coding. arXiv preprint arXiv:1807.03748 (2018)

  29. Perrett, T., Masullo, A., Burghardt, T., Mirmehdi, M., Damen, D.: Temporal-relational crosstransformers for few-shot action recognition. In: CVPR (2021)

    Google Scholar 

  30. Qiu, Z., Yao, T., Mei, T.: Learning spatio-temporal representation with pseudo-3d residual networks. In: ICCV (2017)

    Google Scholar 

  31. Simonyan, K., Zisserman, A.: Two-stream convolutional networks for action recognition in videos. In: NeurIPS (2014)

    Google Scholar 

  32. Snell, J., Swersky, K., Zemel, R.S.: Prototypical networks for few-shot learning. In: NeurIPS (2017)

    Google Scholar 

  33. Soomro, K., Zamir, A.R., Shah, M.: UCF101: a dataset of 101 human actions classes from videos in the wild. arXiv preprint arXiv:1212.0402 (2012)

  34. Su, J.-C., Maji, S., Hariharan, B.: When does self-supervision improve few-shot learning? In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12352, pp. 645–666. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58571-6_38

    Chapter  Google Scholar 

  35. Sung, F., Yang, Y., Zhang, L., Xiang, T., Torr, P.H.S., Hospedales, T.M.: Learning to compare: Relation network for few-shot learning. In: CVPR (2018)

    Google Scholar 

  36. Sung, F., Zhang, L., Xiang, T., Hospedales, T.M., Yang, Y.: Learning to learn: Meta-critic networks for sample efficient learning. IEEE Access 7 (2019)

    Google Scholar 

  37. Tian, Y., Krishnan, D., Isola, P.: Contrastive multiview coding. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12356, pp. 776–794. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58621-8_45

    Chapter  Google Scholar 

  38. Tran, D., Bourdev, L., Fergus, R., Torresani, L., Paluri, M.: Learning spatiotemporal features with 3d convolutional networks. In: ICCV (2015)

    Google Scholar 

  39. Tran, D., Wang, H., Torresani, L., Ray, J., LeCun, Y., Paluri, M.: A closer look at spatiotemporal convolutions for action recognition. In: CVPR (2018)

    Google Scholar 

  40. Vaswani, A., et al.: Attention is all you need. In: NeurIPS (2017)

    Google Scholar 

  41. Vinyals, O., Blundell, C., Lillicrap, T., Kavukcuoglu, K., Wierstra, D.: Matching networks for one shot learning. In: NeurIPS (2016)

    Google Scholar 

  42. Wang, L., et al.: Temporal segment networks for action recognition in videos. TPAMI 41, 2740–2755 (2018)

    Article  Google Scholar 

  43. Wang, X., Girshick, R., Gupta, A., He, K.: Non-local neural networks. In: CVPR (2018)

    Google Scholar 

  44. Wang, Y.-X., Hebert, M.: Learning to learn: model regression networks for easy small sample learning. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9910, pp. 616–634. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46466-4_37

    Chapter  Google Scholar 

  45. Wu, Z., Xiong, Y., Yu, S.X., Lin, D.: Unsupervised feature learning via non-parametric instance discrimination. In: CVPR (2018)

    Google Scholar 

  46. Ye, M., Zhang, X., Yuen, P.C., Chang, S.F.: Unsupervised embedding learning via invariant and spreading instance feature. In: CVPR (2019)

    Google Scholar 

  47. Zhang, H., Zhang, L., Qi, X., Li, H., Torr, P.H.S., Koniusz, P.: Few-shot action recognition with permutation-invariant attention. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12350, pp. 525–542. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58558-7_31

    Chapter  Google Scholar 

  48. Zhu, L., Yang, Y.: Compound memory networks for few-shot video classification. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 782–797. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_46

    Chapter  Google Scholar 

  49. Zhu, L., Yang, Y.: Label independent memory for semi-supervised few-shot video classification. IEEE Ann. Hist. Comput. 44, 273–2851 (2020)

    Google Scholar 

Download references

Acknowledgment

This work was partially supported by National Natural Science Foundation of China (No. 62072462), National Key R &D Program of China (No. 2020AAA0108600), and Large-Scale Pre-Training Program 468 of Beijing Academy of Artificial Intelligence (BAAI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qin Jin .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 206 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zheng, S., Chen, S., Jin, Q. (2022). Few-Shot Action Recognition with Hierarchical Matching and Contrastive Learning. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13664. Springer, Cham. https://doi.org/10.1007/978-3-031-19772-7_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19772-7_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19771-0

  • Online ISBN: 978-3-031-19772-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics