Skip to main content

Panoramic Human Activity Recognition

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Abstract

To obtain a more comprehensive activity understanding for a crowded scene, in this paper, we propose a new problem of panoramic human activity recognition (PAR), which aims to simultaneously achieve the recognition of individual actions, social group activities, and global activities. This is a challenging yet practical problem in real-world applications. To track this problem, we develop a novel hierarchical graph neural network to progressively represent and model the multi-granular human activities and mutual social relations for a crowd of people. We further build a benchmark to evaluate the proposed method and other related methods. Experimental results verify the rationality of the proposed PAR problem, the effectiveness of our method and the usefulness of the benchmark. We have released the source code and benchmark to the public for promoting the study on this problem.

H. Yan and J. Li—Equal Contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bazzani, L., Cristani, M., Murino, V.: Decentralized particle filter for joint individual-group tracking. In: CVPR (2012)

    Google Scholar 

  2. Chang, M.C., Krahnstoever, N., Ge, W.: Probabilistic group-level motion analysis and scenario recognition. In: ICCV (2011)

    Google Scholar 

  3. Choi W, Shahid K, S.S.: What are they doing?: Collective activity classification using spatio-temporal relationship among people. In: ICCV (2009)

    Google Scholar 

  4. Diba, A., et al.: Spatio-temporal channel correlation networks for action classification. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11208, pp. 299–315. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01225-0_18

    Chapter  Google Scholar 

  5. Du, Y., Yuan, C., Li, B., Zhao, L., Li, Y., Hu, W.: Interaction-aware spatio-temporal pyramid attention networks for action classification. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11220, pp. 388–404. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01270-0_23

    Chapter  Google Scholar 

  6. Ehsanpour, M., Abedin, A., Saleh, F., Shi, J., Reid, I., Rezatofighi, H.: Joint learning of social groups, individuals action and sub-group activities in videos. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12354, pp. 177–195. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58545-7_11

    Chapter  Google Scholar 

  7. Ehsanpour, M., Saleh, F.S., Savarese, S., Reid, I.D., Rezatofighi, H.: JRDB-act: a large-scale dataset for spatio-temporal action, social group and activity detection. In: arXiv preprint (2021)

    Google Scholar 

  8. Feichtenhofer, C., Fan, H., Malik, J., He, K.: Slowfast networks for video recognition. In: ICCV (2019)

    Google Scholar 

  9. Feldmann, M., Fränken, D., Koch, W.: Tracking of extended objects and group targets using random matrices. IEEE Trans. Sig. Process. 59(4), 1409–1420 (2010)

    Article  Google Scholar 

  10. Fernando, T., Denman, S., Sridharan, S., Fookes, C.: GD-GAN: generative adversarial networks for trajectory prediction and group detection in crowds. In: Jawahar, C.V., Li, H., Mori, G., Schindler, K. (eds.) ACCV 2018. LNCS, vol. 11361, pp. 314–330. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20887-5_20

    Chapter  Google Scholar 

  11. Friji, R., Drira, H., Chaieb, F., Kchok, H., Kurtek, S.: Geometric deep neural network using rigid and non-rigid transformations for human action recognition. In: ICCV (2021)

    Google Scholar 

  12. Gan, Y., Han, R., Yin, L., Feng, W., Wang, S.: Self-supervised multi-view multi-human association and tracking. In: ACM MM (2021)

    Google Scholar 

  13. Gavrilyuk, K., Sanford, R., Javan, M., Snoek, C.G.: Actor-transformers for group activity recognition. In: CVPR (2020)

    Google Scholar 

  14. Ge, W., Collins, R.T., Ruback, R.B.: Vision-based analysis of small groups in pedestrian crowds. IEEE TPAMI 34(5), 1003–1016 (2012)

    Article  Google Scholar 

  15. Gemeren, C.V., Poppe, R., Veltkamp, R.C.: Spatio-temporal detection of fine-grained dyadic human interactions. In: International Workshop on Human Behavior Understanding (2016)

    Google Scholar 

  16. Godbole, S., Sarawagi, S.: Discriminative methods for multi-labeled classification. In: Pacific-Asia Conference on Knowledge Discovery and Data Mining (2004)

    Google Scholar 

  17. Gu, C., et al.: Ava: A video dataset of spatio-temporally localized atomic visual actions. In: CVPR (2018)

    Google Scholar 

  18. Han, R., Feng, W., Zhang, Y., Zhao, J., Wang, S.: Multiple human association and tracking from egocentric and complementary top views. IEEE TPAMI (2021). https://doi.org/10.1109/TPAMI.2021.3070562

    Article  Google Scholar 

  19. Han, R., et al.: Complementary-view multiple human tracking. In: AAAI (2020)

    Google Scholar 

  20. Han, R., Zhao, J., Feng, W., Gan, Y., Wan, L., Wang, S.: Complementary-view co-interest person detection. In: ACM MM (2020)

    Google Scholar 

  21. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: ICCV (2017)

    Google Scholar 

  22. Huang, Z., Wan, C., Probst, T., Van Gool, L.: Deep learning on lie groups for skeleton-based action recognition. In: CVPR (2017)

    Google Scholar 

  23. Ibrahim, M.S., Mori, G.: Hierarchical relational networks for group activity recognition and retrieval. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11207, pp. 742–758. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01219-9_44

    Chapter  Google Scholar 

  24. Ibrahim, M.S., Muralidharan, S., Deng, Z., Vahdat, A., Mori, G.: A hierarchical deep temporal model for group activity recognition. In: CVPR (2016)

    Google Scholar 

  25. Li, Y., Chen, L., He, R., Wang, Z., Wu, G., Wang, L.: MultiSports: a multi-person video dataset of spatio-temporally localized sports actions. In: arXiv preprint (2021)

    Google Scholar 

  26. Ma, F., et al.: SF-net: single-frame supervision for temporal action localization. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12349, pp. 420–437. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58548-8_25

    Chapter  Google Scholar 

  27. Marszalek, M., Laptev, I., Schmid, C.: Actions in context. In: CVPR (2009)

    Google Scholar 

  28. Martin-Martin, R., et al.: JRDB: a dataset and benchmark of egocentric robot visual perception of humans in built environments. IEEE TPAMI (2021). https://doi.org/10.1109/TPAMI.2021.3070543

    Article  Google Scholar 

  29. Mettes, P., van Gemert, J.C., Snoek, C.G.M.: Spot on: action localization from pointly-supervised proposals. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9909, pp. 437–453. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46454-1_27

    Chapter  Google Scholar 

  30. Pan, J., Chen, S., Shou, M.Z., Liu, Y., Shao, J., Li, H.: Actor-context-actor relation network for spatio-temporal action localization. In: CVPR (2021)

    Google Scholar 

  31. Pang, S.K., Li, J., Godsill, S.J.: Detection and tracking of coordinated groups. IEEE Trans. Aerosp. Electron. Syst. 47(1), 472–502 (2011)

    Article  Google Scholar 

  32. Patron-Perez, A., Marszalek, M., Reid, I., Zisserman, A.: Structured learning of human interactions in tv shows. IEEE TPAMI 34(12), 2441–2453 (2012)

    Article  Google Scholar 

  33. Pramono, R.R.A., Chen, Y.T., Fang, W.H.: Empowering relational network by self-attention augmented conditional random fields for group activity recognition. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 71–90. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_5

    Chapter  Google Scholar 

  34. Ryoo, M.S., Aggarwal, J.K.: Spatio-temporal relationship match: video structure comparison for recognition of complex human activities. In: ICCV (2009)

    Google Scholar 

  35. Shao, J., Change Loy, C., Wang, X.: Scene-independent group profiling in crowd. In: CVPR (2014)

    Google Scholar 

  36. Shu, T., Todorovic, S., Zhu, S.C.: CERN: confidence-energy recurrent network for group activity recognition. In: CVPR (2017)

    Google Scholar 

  37. Si, C., Jing, Y., Wang, W., Wang, L., Tan, T.: Skeleton-based action recognition with spatial reasoning and temporal stack learning. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11205, pp. 106–121. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01246-5_7

    Chapter  Google Scholar 

  38. Solera, F., Calderara, S., Cucchiara, R.: Socially constrained structural learning for groups detection in crowd. IEEE TPAMI 38(5), 995–1008 (2015)

    Article  Google Scholar 

  39. Soomro, K., Zamir, A.R., Shah, M.: Ucf101: a dataset of 101 human actions classes from videos in the wild. Comput. Sci. (2012)

    Google Scholar 

  40. Stergiou, A., Poppe, R.: Analyzing human-human interactions: a survey. Comput. Vision Image Underst. 188(Nov.), 102799.1–102799.12 (2019)

    Google Scholar 

  41. Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: CVPR (2016)

    Google Scholar 

  42. Tang, J., Xia, J., Mu, X., Pang, B., Lu, C.: Asynchronous interaction aggregation for action detection. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12360, pp. 71–87. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58555-6_5

    Chapter  Google Scholar 

  43. Vemulapalli, R., Arrate, F., Chellappa, R.: Human action recognition by representing 3D skeletons as points in a lie group. In: CVPR (2014)

    Google Scholar 

  44. Wang, L., et al.: Temporal segment networks: towards good practices for deep action recognition. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 20–36. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46484-8_2

    Chapter  Google Scholar 

  45. Wang, X., et al.: Panda: a gigapixel-level human-centric video dataset. In: CVPR (2020)

    Google Scholar 

  46. Weinzaepfel, P., Martin, X., Schmid, C.: Towards weakly-supervised action localization. In: arXiv preprint (2016)

    Google Scholar 

  47. Wu, J., Kuang, Z., Wang, L., Zhang, W., Wu, G.: Context-aware RCNN: a baseline for action detection in videos. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12370, pp. 440–456. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58595-2_27

    Chapter  Google Scholar 

  48. Wu, J., Wang, L., Wang, L., Guo, J., Wu, G.: Learning actor relation graphs for group activity recognition. In: CVPR (2019)

    Google Scholar 

  49. Yan, R., Xie, L., Tang, J., Shu, X., Tian, Q.: HiGCIN: hierarchical graph-based cross inference network for group activity recognition. IEEE TPAMI (2020). https://doi.org/10.1109/TPAMI.2020.3034233

    Article  Google Scholar 

  50. Yuan, H., Ni, D.: Learning visual context for group activity recognition. In: AAAI (2021)

    Google Scholar 

  51. Yun, K., Honorio, J., Chattopadhyay, D., Berg, T.L., Samaras, D.: Two-person interaction detection using body-pose features and multiple instance learning. In: CVPRW (2012)

    Google Scholar 

  52. Zelnik-Manor, L., Perona, P.: Self-tuning spectral clustering. In: NeurIPS (2004)

    Google Scholar 

  53. Zhan, X., Liu, Z., Yan, J., Lin, D., Loy, C.C.: Consensus-driven propagation in massive unlabeled data for face recognition. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11213, pp. 576–592. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01240-3_35

    Chapter  Google Scholar 

  54. Zhang, X.Y., Shi, H., Li, C., Li, P.: Multi-instance multi-label action recognition and localization based on spatio-temporal pre-trimming for untrimmed videos. In: AAAI (2020)

    Google Scholar 

  55. Zhao, J., Han, R., Gan, Y., Wan, L., Feng, W., Wang, S.: Human identification and interaction detection in cross-view multi-person videos with wearable cameras. In: ACM MM (2020)

    Google Scholar 

  56. Zhou, Y., Sun, X., Zha, Z.J., Zeng, W.: MICT: mixed 3D/2D convolutional tube for human action recognition. In: CVPR (2018)

    Google Scholar 

Download references

Acknowledgment

This work was supported by the National Natural Science Foundation of China under Grants U1803264, 62072334, and the Tianjin Research Innovation Project for Postgraduate Students under Grant 2021YJSB174.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ruize Han , Wei Feng or Song Wang .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 1357 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Han, R., Yan, H., Li, J., Wang, S., Feng, W., Wang, S. (2022). Panoramic Human Activity Recognition. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13664. Springer, Cham. https://doi.org/10.1007/978-3-031-19772-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19772-7_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19771-0

  • Online ISBN: 978-3-031-19772-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics