Abstract
Intuition might suggest that motion and dynamic information are key to video-based action recognition. In contrast, there is evidence that state-of-the-art deep-learning video understanding architectures are biased toward static information available in single frames. Presently, a methodology and corresponding dataset to isolate the effects of dynamic information in video are missing. Their absence makes it difficult to understand how well contemporary architectures capitalize on dynamic vs. static information. We respond with a novel Appearance Free Dataset (AFD) for action recognition. AFD is devoid of static information relevant to action recognition in a single frame. Modeling of the dynamics is necessary for solving the task, as the action is only apparent through consideration of the temporal dimension. We evaluated 11 contemporary action recognition architectures on AFD as well as its related RGB video. Our results show a notable decrease in performance for all architectures on AFD compared to RGB. We also conducted a complimentary study with humans that shows their recognition accuracy on AFD and RGB is very similar and much better than the evaluated architectures on AFD. Our results motivate a novel architecture that revives explicit recovery of optical flow, within a contemporary design for best performance on AFD and RGB.
Code & Data: f-ilic.github.io/AppearanceFreeActionRecognition.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Laying down harmonised rules on artificial intelligence (artificial intelligence act) and amending certain union legislative acts. European Commision (2021)
Regulating AI: Critical issues and choices. Law Council of Ontario (2021)
Aafaq, N., Mian, A., Liu, W., Gilani, S.Z., Shah, M.: Video description: a survey of methods, datasets, and evaluation metrics. ACM Comput. Surv. 52(6), 1–37 (2019)
Baker, S., Scharstein, D., Lewis, J., Roth, S., Black, M.J., Szeliski, R.: A database and evaluation methodology for optical flow. Int. J. Comput. Vision 92(1), 1–31 (2011)
Bideau, P., Learned-Miller, E.: It’s moving! A probabilistic model for causal motion segmentation in moving camera videos. In: Proceedings of the European Conference on Computer Vision (2016)
Braddick, O.J.: Low-level and high-level processes in apparent motion. Philos. Trans. R. Soc. London B Biol. Sci. 290(1038), 137–151 (1980)
Butler, D.J., Wulff, J., Stanley, G.B., Black, M.J.: A naturalistic open source movie for optical flow evaluation. In: Proceedings of the European Conference on Computer Vision (2012)
Carreira, J., Zisserman, A.: Quo vadis, action recognition? A new model and the kinetics dataset. In: Proceedings of the Conference on Computer Vision and Pattern Recognition (2017)
Choi, J., Gao, C., Messou, C.E.J., Huang, J.B.: Why can’t I dance in the mall? Learning to mitigate scene bias in action recognition. In: Proceedings of the Conference on Advances in Neural Information Processing Systems (2019)
Dittrich, W.H.: Action categories and the perception of biological motion. Perception 22(1), 15–22 (1993)
Dosovitskiy, A., et al.: FlowNet: learning optical flow with convolutional networks. In: Proceedings of the International Conference on Computer Vision (2015)
Fan, H., et al.: Multiscale vision transformers. In: Proceedings of the International Conference on Computer Vision (2021)
Feichtenhofer, C.: X3D: expanding architectures for efficient video recognition. In: Proceedings of the Conference on Computer Vision and Pattern Recognition (2020)
Feichtenhofer, C., Fan, H., Malik, J., He, K.: SlowFast networks for video recognition. In: Proceedings of the International Conference on Computer Vision (2019)
Feichtenhofer, C., Pinz, A., Wildes, R.P.: Spatiotemporal multiplier networks for video action recognition. In: Proceedings of the Conference on Computer Vision and Pattern Recognition (2017)
Feichtenhofer, C., Pinz, A., Wildes, R.P., Zisserman, A.: Deep insights into convolutional networks for video recognition. Int. J. Comput. Vision 128(2), 420–437 (2020)
Ghodrati, A., Gavves, E., Snoek, C.G.M.: Video time: properties, encoders and evaluation. In: British Machine Vision Conference (2018)
Goodale, M.A., Milner, A.D.: Separate visual pathways for perception and action. Trends Neurosci. 15(1), 20–25 (1992)
Goyal, R., et al.: The “something something” video database for learning and evaluating visual common sense. In: Proceedings of the International Conference on Computer Vision (2017)
Gu, C., et al.: AVA: a video dataset of spatio-temporally localized atomic visual actions. In: Proceedings of the Conference on Computer Vision and Pattern Recognition (2018)
Hadji, I., Wildes, R.P.: A new large scale dynamic texture dataset with application to convnet understanding. In: Proceedings of the European Conference on Computer Vision (2018)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the Conference on Computer Vision and Pattern Recognition (2016)
He, Y., Shirakabe, S., Satoh, Y., Kataoka, H.: Human action recognition without human. In: Proceedings of the European Conference on Computer Vision (2016)
Hiley, L., Preece, A., Hicks, Y.: Explainable deep learning for video recognition tasks: a framework & recommendations. arXiv preprint arXiv:1909.05667 (2019)
Hubel, D.H., Wiesel, T.N.: Receptive fields of single neurones in the cat’s striate cortex. J. Physiol. 148(3), 574–591 (1959)
Iandola, F.N., Han, S., Moskewicz, M.W., Ashraf, K., Dally, W.J., Keutzer, K.: SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and \(<\) 0.5 mb model size. arXiv preprint arXiv:1602.07360 (2016)
Ji, S., Xu, W., Yang, M., Yu, K.: 3D convolutional neural networks for human action recognition. IEEE Trans. Pattern Anal. Mach. Intell. 35(1), 221–231 (2012)
Johansson, G.: Visual perception of biological motion and a model for its analysis. Percept. Psychophysics 14(2), 201–211 (1973)
Julesz, B.: Foundations of Cyclopean Perception. U. Chicago Press, Chicago (1971)
Kang, S.M., Wildes, R.P.: Review of action recognition and detection methods. arXiv preprint arXiv:1610.06906 (2016)
Karpathy, A., Toderici, G., Shetty, S., Leung, T., Sukthankar, R., Fei-Fei, L.: Large-scale video classification with convolutional neural networks. In: Proceedings of the Conference on Computer Vision and Pattern Recognition (2014)
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)
Kong, Y., Jia, Y., Fu, Y.: Interactive phrases: semantic descriptions for human interaction recognition. IEEE Trans. Pattern Anal. Mach. Intell. 36(9), 1775–1788 (2014)
Kowal, M., Siam, M., Islam, A., Bruce, N.D.B., Wildes, R.P., Derpanis, K.G.: A deeper dive into what deep spatiotemporal networks encode: Quantifying static vs. dynamic information. In: Proceedings of the Conference on Computer Vision and Pattern Recognition (2022)
Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Proceedings of the Advances in Neural Information Processing Systems (2012)
Kuehne, H., Jhuang, H., Garrote, E., Poggio, T., Serre, T.: HMDB: a large video database for human motion recognition. In: Proceedings of the International Conference on Computer Vision (2011)
Lamdouar, H., Yang, C., Xie, W., Zisserman, A.: Betrayed by motion: camouflaged object discovery via motion segmentation. In: Proceedings of the Asian Conference on Computer Vision (2020)
Li, Y., Li, Y., Vasconcelos, N.: Diving48 dataset. https://www.svcl.ucsd.edu/projects/resound/dataset.html
Li, Y., Li, Y., Vasconcelos, N.: Resound: towards action recognition without representation bias. In: Proceedings of the European Conference on Computer Vision (2018)
Mahmood, N., Ghorbani, N., Troje, N., Pons-Moll, G., Black, M.: AMASS: archive of motion capture as surface Shapes. In: Proceedings of the International Conference on Computer Vision (2019)
Manttari, J., Broomé, S., Folkesson, J., Kjellstrom, H.: Interpreting video features: a comparison of 3d convolutional networks and convolutional LSTM networks. In: Proceedings of the Asian Conference on Computer Vision (2020)
Mayer, N., et al.: A large dataset to train convolutional networks for disparity, optical flow, and scene flow estimation. In: Proceedings of the Conference on Computer Vision and Pattern Recognition (2016)
Miller, G.A.: The magical number seven, plus or minus two: Some limits on our capacity for processing information. Psychol. Rev. 63(2), 81 (1956)
Nishida, S., Kawabe, T., Sawayama, M., Fukiage, T.: Motion perception: from detection to interpretation. Ann. Rev. Vis. Sci. 4, 501–523 (2018)
Richter, S.R., Hayder, Z., Koltun, V.: Playing for benchmarks. In: Proceedings of the International Conference on Computer Vision (2017)
Ros, G., Sellart, L., Materzynska, J., Vazquez, D., Lopez, A.M.: The SYNTHIA dataset: a large collection of synthetic images for semantic segmentation of urban scenes. In: Proceedings of the Conference on Computer Vision and Pattern Recognition (2016)
Sevilla-Lara, L., Liao, Y., Güney, F., Jampani, V., Geiger, A., Black, M.J.: On the integration of optical flow and action recognition. In: Brox, T., Bruhn, A., Fritz, M. (eds.) GCPR 2018. LNCS, vol. 11269, pp. 281–297. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-12939-2_20
Sevilla-Lara, L., Zha, S., Yan, Z., Goswami, V., Feiszli, M., Torresani, L.: Only time can tell: discovering temporal data for temporal modeling. In: Proceedings of the Winter Conference on Applications of Computer Vision (2021)
Simonyan, K., Zisserman, A.: Two-stream convolutional networks for action recognition in videos. In: Proceedings of the Conference on Advances in Neural Information Processing Systems (2014)
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)
Soomro, K., Zamir, A.R., Shah, M.: UCF101: a dataset of 101 human actions classes from videos in the wild. arXiv preprint arXiv:1212.0402 (2012)
Sriastava, N., Manisomov, E., Salakhutdinov, R.: Unsupervised learning of video representations using LSTMs. In: Proceedings of the International Conference on Machine Learning (2015)
Teed, Z., Deng, J.: RAFT: recurrent all-pairs field transforms for optical flow. In: Proceedings of the European Conference on Computer Vision (2020)
Thoma, M.: Analysis and Optimization of Convolutional Neural Network Architectures. Master’s thesis, University of the State of Baden-Wuerttemberg (2017)
Tran, D., Bourdev, L., Fergus, R., Torresani, L., Paluri, M.: Learning spatiotemporal features with 3D convolutional networks. In: Proceedings of the International Conference on Computer Vision (2015)
Tran, D., Wang, H., Torresani, L., Ray, J., LeCun, Y., Paluri, M.: A closer look at spatiotemporal convolutions for action recognition. In: Proceedings of the Conference on Computer Vision and Pattern Recognition (2018)
Troje, N.F.: Decomposing biological motion: a framework for analysis and synthesis of human gait patterns. J. Vision 2(5), 2 (2002)
Ullman, S.: The Interpretation of Visual Motion. MIT Press, Cambridge (1979)
Vu, T.H., Olsson, C., Laptev, I., Oliva, A., Sivic, J.: Predicting actions from static scenes. In: Proceedings of the European Conference on Computer Vision (2014)
Wang, X., Girshick, R., Gupta, A., He, K.: Non-local neural networks. In: Proceedings of the Conference on Computer Vision and Pattern Recognition (2018)
Zhao, H., Wildes, R.P.: Interpretable deep feature propagation for early action recognition. arXiv preprint arXiv:2107.05122 (2021)
Zhou, B., Tang, X., Wang, X.: Coherent filtering: detecting coherent motions from crowd clutters. In: Proceedings of the European Conference on Computer Vision (2012)
Zhu, Y., et al.: A comprehensive study of deep video action recognition. arXiv preprint arXiv:2012.06567 (2020)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Ilic, F., Pock, T., Wildes, R.P. (2022). Is Appearance Free Action Recognition Possible?. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13664. Springer, Cham. https://doi.org/10.1007/978-3-031-19772-7_10
Download citation
DOI: https://doi.org/10.1007/978-3-031-19772-7_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-19771-0
Online ISBN: 978-3-031-19772-7
eBook Packages: Computer ScienceComputer Science (R0)