Skip to main content

Few-Shot Single-View 3D Reconstruction with Memory Prior Contrastive Network

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Abstract

3D reconstruction of novel categories based on few-shot learning is appealing in real-world applications and attracts increasing research interests. Previous approaches mainly focus on how to design shape prior models for different categories. Their performance on unseen categories is not very competitive. In this paper, we present a Memory Prior Contrastive Network (MPCN) that can store shape prior knowledge in a few-shot learning based 3D reconstruction framework. With the shape memory, a multi-head attention module is proposed to capture different parts of a candidate shape prior and fuse these parts together to guide 3D reconstruction of novel categories. Besides, we introduce a 3D-aware contrastive learning method, which can not only complement the retrieval accuracy of memory network, but also better organize image features for downstream tasks. Compared with previous few-shot 3D reconstruction methods, MPCN can handle the inter-class variability without category annotations. Experimental results on a benchmark synthetic dataset and the Pascal3D+ real-world dataset show that our model outperforms the current state-of-the-art methods significantly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ba, J.L., Kiros, J.R., Hinton, G.E.: Layer normalization. arXiv preprint arXiv:1607.06450 (2016)

  2. Cadena, C., et al.: Past, present, and future of simultaneous localization and mapping: toward the robust-perception age. IEEE Trans. Robot. 32(6), 1309–1332 (2016)

    Article  Google Scholar 

  3. Chang, A.X., et al.: ShapeNet: an information-rich 3D model repository. arXiv preprint arXiv:1512.03012 (2015)

  4. Chen, R., Chen, T., Hui, X., Wu, H., Li, G., Lin, L.: Knowledge graph transfer network for few-shot recognition. In: AAAI (2020)

    Google Scholar 

  5. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. In: ICML (2020)

    Google Scholar 

  6. Cheng, T.Y., Yang, H.R., Trigoni, N., Chen, H.T., Liu, T.L.: Pose adaptive dual Mixup for few-shot single-view 3D reconstruction. In: AAAI (2022)

    Google Scholar 

  7. Choi, J., Krishnamurthy, J., Kembhavi, A., Farhadi, A.: Structured set matching networks for one-shot part labeling. In: CVPR (2018)

    Google Scholar 

  8. Choy, C.B., Xu, D., Gwak, J., Chen, K., Savarese, S.: 3D–R2N2: a unified approach for single and multi-view 3D object reconstruction. In: ECCV (2016)

    Google Scholar 

  9. Fan, H., Su, H., Guibas, L.J.: A point set generation network for 3D object reconstruction from a single image. In: CVPR (2017)

    Google Scholar 

  10. Gao, T., Han, X., Liu, Z., Sun, M.: Hybrid attention-based prototypical networks for noisy few-shot relation classification. In: AAAI (2019)

    Google Scholar 

  11. He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised visual representation learning. In: CVPR (2020)

    Google Scholar 

  12. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR (2016)

    Google Scholar 

  13. Hermans, A., Beyer, L., Leibe, B.: In defense of the triplet loss for person re-identification. arXiv preprint arXiv:1703.07737 (2017)

  14. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  15. Jeong, M., Choi, S., Kim, C.: Few-shot open-set recognition by transformation consistency. In: CVPR (2021)

    Google Scholar 

  16. Kaiser, Ł., Nachum, O., Roy, A., Bengio, S.: Learning to remember rare events. In: ICLR (2017)

    Google Scholar 

  17. Khosla, P., et al.: Supervised contrastive learning. In: NeurIPS (2020)

    Google Scholar 

  18. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: ICLR (2015)

    Google Scholar 

  19. Koch, G., Zemel, R., Salakhutdinov, R., et al.: Siamese neural networks for one-shot image recognition. In: ICMLW (2015)

    Google Scholar 

  20. Lin, Y., Wang, Y., Li, Y., Wang, Z., Gao, Y., Khan, L.: Single view point cloud generation via unified 3D prototype. In: AAAI (2021)

    Google Scholar 

  21. Mescheder, L., Oechsle, M., Niemeyer, M., Nowozin, S., Geiger, A.: Occupancy networks: learning 3D reconstruction in function space. In: CVPR (2019)

    Google Scholar 

  22. Michalkiewicz, M., Parisot, S., Tsogkas, S., Baktashmotlagh, M., Eriksson, A., Belilovsky, E.: Few-shot single-view 3-D object reconstruction with compositional priors. In: ECCV (2020)

    Google Scholar 

  23. Nooruddin, F.S., Turk, G.: Simplification and repair of polygonal models using volumetric techniques. IEEE Trans. Vis. Comput. Graph. 9(2), 191–205 (2003)

    Article  Google Scholar 

  24. Paszke, A., et al.: Pytorch: an imperative style, high-performance deep learning library. In: NeurIPS (2019)

    Google Scholar 

  25. Ramalho, T., Garnelo, M.: Adaptive posterior learning: few-shot learning with a surprise-based memory module. In: ICLR (2018)

    Google Scholar 

  26. Ravichandran, A., Bhotika, R., Soatto, S.: Few-shot learning with embedded class models and shot-free meta training. In: ICCV (2019)

    Google Scholar 

  27. Richter, S.R., Roth, S.: Matryoshka networks: predicting 3D geometry via nested shape layers. In: CVPR (2018)

    Google Scholar 

  28. Satorras, V.G., Estrach, J.B.: Few-shot learning with graph neural networks. In: ICLR (2018)

    Google Scholar 

  29. Schonberger, J.L., Frahm, J.M.: Structure-from-motion revisited. In: CVPR (2016)

    Google Scholar 

  30. Tatarchenko, M., Dosovitskiy, A., Brox, T.: Octree generating networks: efficient convolutional architectures for high-resolution 3D outputs. In: ICCV (2017)

    Google Scholar 

  31. Tatarchenko, M., Richter, S.R., Ranftl, R., Li, Z., Koltun, V., Brox, T.: What do single-view 3D reconstruction networks learn? In: CVPR (2019)

    Google Scholar 

  32. Vaswani, A., et al.: Attention is all you need. In: NeurIPS (2017)

    Google Scholar 

  33. Vinyals, O., Blundell, C., Lillicrap, T., Wierstra, D., et al.: Matching networks for one shot learning. In: NeurIPS (2016)

    Google Scholar 

  34. Wallace, B., Hariharan, B.: Few-shot generalization for single-image 3D reconstruction via priors. In: ICCV (2019)

    Google Scholar 

  35. Wang, J., Sun, B., Lu, Y.: MVPNet: multi-view point regression networks for 3D object reconstruction from a single image. In: AAAI (2019)

    Google Scholar 

  36. Wang, N., Zhang, Y., Li, Z., Fu, Y., Liu, W., Jiang, Y.G.: Pixel2mesh: generating 3D mesh models from single RGB images. In: ECCV (2018)

    Google Scholar 

  37. Wen, C., Zhang, Y., Li, Z., Fu, Y.: Pixel2mesh++: multi-view 3D mesh generation via deformation. In: ICCV (2019)

    Google Scholar 

  38. Wu, J., Wang, Y., Xue, T., Sun, X., Freeman, B., Tenenbaum, J.: MarrNet: 3D shape reconstruction via 2.5 D sketches. In: NeurIPS (2017)

    Google Scholar 

  39. Wu, J., Zhang, C., Xue, T., Freeman, W.T., Tenenbaum, J.B.: Learning a probabilistic latent space of object shapes via 3D generative-adversarial modeling. In: NeurIPS (2016)

    Google Scholar 

  40. Wu, J., Zhang, C., Zhang, X., Zhang, Z., Freeman, W.T., Tenenbaum, J.B.: Learning shape priors for single-view 3D completion and reconstruction. In: ECCV (2018)

    Google Scholar 

  41. Xiang, Y., Mottaghi, R., Savarese, S.: Beyond pascal: a benchmark for 3D object detection in the wild. In: WACV (2014)

    Google Scholar 

  42. Xie, H., Yao, H., Sun, X., Zhou, S., Zhang, S.: Pix2vox: context-aware 3D reconstruction from single and multi-view images. In: ICCV (2019)

    Google Scholar 

  43. Xie, H., Yao, H., Zhang, S., Zhou, S., Sun, W.: Pix2Vox++: multi-scale context-aware 3D object reconstruction from single and multiple images. Int. J. Comput. Vision 128(12), 2919–2935 (2020). https://doi.org/10.1007/s11263-020-01347-6

    Article  Google Scholar 

  44. Xu, Q., Wang, W., Ceylan, D., Mech, R., Neumann, U.: DISN: deep implicit surface network for high-quality single-view 3D reconstruction. In: NeurIPS (2019)

    Google Scholar 

  45. Yang, S., Xu, M., Xie, H., Perry, S., Xia, J.: Single-view 3D object reconstruction from shape priors in memory. In: CVPR (2021)

    Google Scholar 

  46. Zhang, H., Cisse, M., Dauphin, Y.N., Lopez-Paz, D.: Mixup: beyond empirical risk minimization. In: ICLR (2018)

    Google Scholar 

  47. Zhen Xing, Hengduo li, Z.W., Jiang, Y.G.: Semi-supervised single-view 3D reconstruction via prototype shape priors. In: ECCV (2022)

    Google Scholar 

  48. Zhu, L., Yang, Y.: Compound memory networks for few-shot video classification. In: ECCV, pp. 751–766 (2018)

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Key Research and Development Program of China, No.2018YFB1402600.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangdong Zhou .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 5077 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xing, Z., Chen, Y., Ling, Z., Zhou, X., Xiang, Y. (2022). Few-Shot Single-View 3D Reconstruction with Memory Prior Contrastive Network. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13661. Springer, Cham. https://doi.org/10.1007/978-3-031-19769-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19769-7_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19768-0

  • Online ISBN: 978-3-031-19769-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics