Abstract
3D reconstruction of novel categories based on few-shot learning is appealing in real-world applications and attracts increasing research interests. Previous approaches mainly focus on how to design shape prior models for different categories. Their performance on unseen categories is not very competitive. In this paper, we present a Memory Prior Contrastive Network (MPCN) that can store shape prior knowledge in a few-shot learning based 3D reconstruction framework. With the shape memory, a multi-head attention module is proposed to capture different parts of a candidate shape prior and fuse these parts together to guide 3D reconstruction of novel categories. Besides, we introduce a 3D-aware contrastive learning method, which can not only complement the retrieval accuracy of memory network, but also better organize image features for downstream tasks. Compared with previous few-shot 3D reconstruction methods, MPCN can handle the inter-class variability without category annotations. Experimental results on a benchmark synthetic dataset and the Pascal3D+ real-world dataset show that our model outperforms the current state-of-the-art methods significantly.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ba, J.L., Kiros, J.R., Hinton, G.E.: Layer normalization. arXiv preprint arXiv:1607.06450 (2016)
Cadena, C., et al.: Past, present, and future of simultaneous localization and mapping: toward the robust-perception age. IEEE Trans. Robot. 32(6), 1309–1332 (2016)
Chang, A.X., et al.: ShapeNet: an information-rich 3D model repository. arXiv preprint arXiv:1512.03012 (2015)
Chen, R., Chen, T., Hui, X., Wu, H., Li, G., Lin, L.: Knowledge graph transfer network for few-shot recognition. In: AAAI (2020)
Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. In: ICML (2020)
Cheng, T.Y., Yang, H.R., Trigoni, N., Chen, H.T., Liu, T.L.: Pose adaptive dual Mixup for few-shot single-view 3D reconstruction. In: AAAI (2022)
Choi, J., Krishnamurthy, J., Kembhavi, A., Farhadi, A.: Structured set matching networks for one-shot part labeling. In: CVPR (2018)
Choy, C.B., Xu, D., Gwak, J., Chen, K., Savarese, S.: 3D–R2N2: a unified approach for single and multi-view 3D object reconstruction. In: ECCV (2016)
Fan, H., Su, H., Guibas, L.J.: A point set generation network for 3D object reconstruction from a single image. In: CVPR (2017)
Gao, T., Han, X., Liu, Z., Sun, M.: Hybrid attention-based prototypical networks for noisy few-shot relation classification. In: AAAI (2019)
He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised visual representation learning. In: CVPR (2020)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: CVPR (2016)
Hermans, A., Beyer, L., Leibe, B.: In defense of the triplet loss for person re-identification. arXiv preprint arXiv:1703.07737 (2017)
Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)
Jeong, M., Choi, S., Kim, C.: Few-shot open-set recognition by transformation consistency. In: CVPR (2021)
Kaiser, Ł., Nachum, O., Roy, A., Bengio, S.: Learning to remember rare events. In: ICLR (2017)
Khosla, P., et al.: Supervised contrastive learning. In: NeurIPS (2020)
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: ICLR (2015)
Koch, G., Zemel, R., Salakhutdinov, R., et al.: Siamese neural networks for one-shot image recognition. In: ICMLW (2015)
Lin, Y., Wang, Y., Li, Y., Wang, Z., Gao, Y., Khan, L.: Single view point cloud generation via unified 3D prototype. In: AAAI (2021)
Mescheder, L., Oechsle, M., Niemeyer, M., Nowozin, S., Geiger, A.: Occupancy networks: learning 3D reconstruction in function space. In: CVPR (2019)
Michalkiewicz, M., Parisot, S., Tsogkas, S., Baktashmotlagh, M., Eriksson, A., Belilovsky, E.: Few-shot single-view 3-D object reconstruction with compositional priors. In: ECCV (2020)
Nooruddin, F.S., Turk, G.: Simplification and repair of polygonal models using volumetric techniques. IEEE Trans. Vis. Comput. Graph. 9(2), 191–205 (2003)
Paszke, A., et al.: Pytorch: an imperative style, high-performance deep learning library. In: NeurIPS (2019)
Ramalho, T., Garnelo, M.: Adaptive posterior learning: few-shot learning with a surprise-based memory module. In: ICLR (2018)
Ravichandran, A., Bhotika, R., Soatto, S.: Few-shot learning with embedded class models and shot-free meta training. In: ICCV (2019)
Richter, S.R., Roth, S.: Matryoshka networks: predicting 3D geometry via nested shape layers. In: CVPR (2018)
Satorras, V.G., Estrach, J.B.: Few-shot learning with graph neural networks. In: ICLR (2018)
Schonberger, J.L., Frahm, J.M.: Structure-from-motion revisited. In: CVPR (2016)
Tatarchenko, M., Dosovitskiy, A., Brox, T.: Octree generating networks: efficient convolutional architectures for high-resolution 3D outputs. In: ICCV (2017)
Tatarchenko, M., Richter, S.R., Ranftl, R., Li, Z., Koltun, V., Brox, T.: What do single-view 3D reconstruction networks learn? In: CVPR (2019)
Vaswani, A., et al.: Attention is all you need. In: NeurIPS (2017)
Vinyals, O., Blundell, C., Lillicrap, T., Wierstra, D., et al.: Matching networks for one shot learning. In: NeurIPS (2016)
Wallace, B., Hariharan, B.: Few-shot generalization for single-image 3D reconstruction via priors. In: ICCV (2019)
Wang, J., Sun, B., Lu, Y.: MVPNet: multi-view point regression networks for 3D object reconstruction from a single image. In: AAAI (2019)
Wang, N., Zhang, Y., Li, Z., Fu, Y., Liu, W., Jiang, Y.G.: Pixel2mesh: generating 3D mesh models from single RGB images. In: ECCV (2018)
Wen, C., Zhang, Y., Li, Z., Fu, Y.: Pixel2mesh++: multi-view 3D mesh generation via deformation. In: ICCV (2019)
Wu, J., Wang, Y., Xue, T., Sun, X., Freeman, B., Tenenbaum, J.: MarrNet: 3D shape reconstruction via 2.5 D sketches. In: NeurIPS (2017)
Wu, J., Zhang, C., Xue, T., Freeman, W.T., Tenenbaum, J.B.: Learning a probabilistic latent space of object shapes via 3D generative-adversarial modeling. In: NeurIPS (2016)
Wu, J., Zhang, C., Zhang, X., Zhang, Z., Freeman, W.T., Tenenbaum, J.B.: Learning shape priors for single-view 3D completion and reconstruction. In: ECCV (2018)
Xiang, Y., Mottaghi, R., Savarese, S.: Beyond pascal: a benchmark for 3D object detection in the wild. In: WACV (2014)
Xie, H., Yao, H., Sun, X., Zhou, S., Zhang, S.: Pix2vox: context-aware 3D reconstruction from single and multi-view images. In: ICCV (2019)
Xie, H., Yao, H., Zhang, S., Zhou, S., Sun, W.: Pix2Vox++: multi-scale context-aware 3D object reconstruction from single and multiple images. Int. J. Comput. Vision 128(12), 2919–2935 (2020). https://doi.org/10.1007/s11263-020-01347-6
Xu, Q., Wang, W., Ceylan, D., Mech, R., Neumann, U.: DISN: deep implicit surface network for high-quality single-view 3D reconstruction. In: NeurIPS (2019)
Yang, S., Xu, M., Xie, H., Perry, S., Xia, J.: Single-view 3D object reconstruction from shape priors in memory. In: CVPR (2021)
Zhang, H., Cisse, M., Dauphin, Y.N., Lopez-Paz, D.: Mixup: beyond empirical risk minimization. In: ICLR (2018)
Zhen Xing, Hengduo li, Z.W., Jiang, Y.G.: Semi-supervised single-view 3D reconstruction via prototype shape priors. In: ECCV (2022)
Zhu, L., Yang, Y.: Compound memory networks for few-shot video classification. In: ECCV, pp. 751–766 (2018)
Acknowledgments
This work was supported by the National Key Research and Development Program of China, No.2018YFB1402600.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Xing, Z., Chen, Y., Ling, Z., Zhou, X., Xiang, Y. (2022). Few-Shot Single-View 3D Reconstruction with Memory Prior Contrastive Network. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13661. Springer, Cham. https://doi.org/10.1007/978-3-031-19769-7_4
Download citation
DOI: https://doi.org/10.1007/978-3-031-19769-7_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-19768-0
Online ISBN: 978-3-031-19769-7
eBook Packages: Computer ScienceComputer Science (R0)