Skip to main content

3D Room Layout Estimation from a Cubemap of Panorama Image via Deep Manhattan Hough Transform

  • Conference paper
  • First Online:
Computer Vision – ECCV 2022 (ECCV 2022)

Abstract

Significant geometric structures can be compactly described by global wireframes in the estimation of 3D room layout from a single panoramic image. Based on this observation, we present an alternative approach to estimate the walls in 3D space by modeling long-range geometric patterns in a learnable Hough Transform block. We transform the image feature from a cubemap tile to the Hough space of a Manhattan world and directly map the feature to the geometric output. The convolutional layers not only learn the local gradient-like line features, but also utilize the global information to successfully predict occluded walls with a simple network structure. Unlike most previous work, the predictions are performed individually on each cubemap tile, and then assembled to get the layout estimation. Experimental results show that we achieve comparable results with recent state-of-the-art in prediction accuracy and performance. Code is available at https://github.com/Starrah/DMH-Net.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Armeni, I., Sax, S., Zamir, A.R., Savarese, S.: Joint 2D–3D-semantic data for indoor scene understanding. arXiv preprint arXiv:1702.01105 (2017)

  2. Ballard, D.H.: Generalizing the Hough transform to detect arbitrary shapes. Pattern Recogn. 13(2), 111–122 (1981)

    Article  Google Scholar 

  3. Beltrametti, M.C., Campi, C., Massone, A.M., Torrente, M.: Geometry of the Hough transforms with applications to synthetic data. Math. Comput. Sci. 1–23 (2020)

    Google Scholar 

  4. Bertamini, M., Helmy, M., Bates, D.: The visual system prioritizes locations near corners of surfaces (not just locations near a corner). Attention Percept. Psychophys. 75(8), 1748–1760 (2013). https://doi.org/10.3758/s13414-013-0514-1

    Article  Google Scholar 

  5. Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 8(6), 679–698 (1986)

    Article  Google Scholar 

  6. Chang, A., et al.: Matterport3D: learning from RGB-D data in indoor environments. In: Proceedings of the International Conference on 3D Vision (3DV), pp. 667–676 (2017)

    Google Scholar 

  7. Coughlan, J.M., Yuille, A.L.: Manhattan world: compass direction from a single image by Bayesian inference. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 941–947 (1999)

    Google Scholar 

  8. Dasgupta, S., Fang, K., Chen, K., Savarese, S.: Delay: robust spatial layout estimation for cluttered indoor scenes. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 616–624 (2016)

    Google Scholar 

  9. Del Pero, L., Bowdish, J., Kermgard, B., Hartley, E., Barnard, K.: Understanding Bayesian rooms using composite 3D object models. In: Proceedings IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 153–160 (2013)

    Google Scholar 

  10. Delage, E., Lee, H., Ng, A.Y.: A dynamic Bayesian network model for autonomous 3D reconstruction from a single indoor image. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2418–2428 (2006)

    Google Scholar 

  11. Fernandez-Labrador, C., Facil, J.M., Perez-Yus, A., Demonceaux, C., Civera, J., Guerrero, J.J.: Corners for layout: End-to-end layout recovery from 360 images. IEEE Robot. Autom. Lett. (RA-L) 5(2), 1255–1262 (2020)

    Google Scholar 

  12. Greene, N.: Environment mapping and other applications of world projections. IEEE Comput. Graph. Appl. 6(11), 21–29 (1986)

    Article  Google Scholar 

  13. Gupta, A., Hebert, M., Kanade, T., Blei, D.: Estimating spatial layout of rooms using volumetric reasoning about objects and surfaces. In: Advances in Neural Information Processing Systems (NeurIPS), pp. 1288–1296 (2010)

    Google Scholar 

  14. Han, Q., Zhao, K., Xu, J., Cheng, M.M.: Deep Hough transform for semantic line detection. IEEE Trans. Pattern Anal. Mach. Intell. 249–265 (2021)

    Google Scholar 

  15. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016)

    Google Scholar 

  16. Hedau, V., Hoiem, D., Forsyth, D.: Recovering the spatial layout of cluttered rooms. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 1849–1856 (2009)

    Google Scholar 

  17. Horry, Y., Anjyo, K.I., Arai, K.: Tour into the picture: using a spidery mesh interface to make animation from a single image. In: Proceedings of the 24th Annual Conference on Computer Graphics and Interactive Techniques, pp. 225–232 (1997)

    Google Scholar 

  18. Hough, P.V.: Method and means for recognizing complex patterns, US Patent 3,069,654, 18 December 1962

    Google Scholar 

  19. Izadinia, H., Shan, Q., Seitz, S.M.: IM2CAD. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2422–2431 (2017)

    Google Scholar 

  20. Jiang, Z., Xiang, Z., Xu, J., Zhao, M.: LGT-Net: indoor panoramic room layout estimation with geometry-aware transformer network. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1654–1663 (2022)

    Google Scholar 

  21. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: Proceedings of the International Conference on Learning Representations (ICLR) (2015)

    Google Scholar 

  22. Lee, C.Y., Badrinarayanan, V., Malisiewicz, T., Rabinovich, A.: RoomNet: end-to-end room layout estimation. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), pp. 4875–4884 (2017)

    Google Scholar 

  23. Lee, D.C., Hebert, M., Kanade, T.: Geometric reasoning for single image structure recovery. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2136–2143 (2009)

    Google Scholar 

  24. Lin, Y., Pintea, S.L., van Gemert, J.C.: Deep Hough-transform line priors. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12367, pp. 323–340. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58542-6_20

    Chapter  Google Scholar 

  25. Mallya, A., Lazebnik, S.: Learning informative edge maps for indoor scene layout prediction. In: Proceedings of the IEEE International Conf. on Computer Vision (ICCV), pp. 936–944 (2015)

    Google Scholar 

  26. Pintore, G., Agus, M., Gobbetti, E.: AtlantaNet: inferring the 3D indoor layout from a single \(360^\circ \) image beyond the Manhattan world assumption. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12353, pp. 432–448. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58598-3_26

    Chapter  Google Scholar 

  27. Pintore, G., Garro, V., Ganovelli, F., Gobbetti, E., Agus, M.: Omnidirectional image capture on mobile devices for fast automatic generation of 2.5 d indoor maps. In: Proceedings of IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 1–9 (2016)

    Google Scholar 

  28. Qi, C.R., Litany, O., He, K., Guibas, L.J.: Deep Hough voting for 3D object detection in point clouds. In: Proceedings of the IEEE International Confernece on Computer Vision (ICCV), pp. 9276–9285 (2019)

    Google Scholar 

  29. Ren, Y., Li, S., Chen, C., Kuo, C.C.J.: A coarse-to-fine indoor layout estimation (cfile) method. In: Asia Conference on Computer Vision (ACCV), pp. 36–51 (2016)

    Google Scholar 

  30. Schwing, A.G., Hazan, T., Pollefeys, M., Urtasun, R.: Efficient structured prediction for 3d indoor scene understanding. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2815–2822 (2012)

    Google Scholar 

  31. Schwing, A.G., Urtasun, R.: Efficient exact inference for 3D indoor scene understanding. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7577, pp. 299–313. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33783-3_22

    Chapter  Google Scholar 

  32. Sobel, I., Feldman, G.: A 3x3 isotropic gradient operator for image processing. A talk at the Stanford Artificial Project, pp. 271–272 (1968)

    Google Scholar 

  33. Sun, C., Hsiao, C.W., Sun, M., Chen, H.T.: Horizonnet: learning room layout with 1D representation and pano stretch data augmentation. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1047–1056 (2019)

    Google Scholar 

  34. Sun, C., Sun, M., Chen, H.T.: Hohonet: 360 indoor holistic understanding with latent horizontal features. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2573–2582 (2021)

    Google Scholar 

  35. Wang, F.E., Yeh, Y.H., Sun, M., Chiu, W.C., Tsai, Y.H.: LED2-Net: monocular 360deg layout estimation via differentiable depth rendering. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 12956–12965 (2021)

    Google Scholar 

  36. Xu, J., Stenger, B., Kerola, T., Tung, T.: Pano2CAD: room layout from a single panorama image. In: Proceedings of IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 354–362 (2017)

    Google Scholar 

  37. Yang, C., Zheng, J., Dai, X., Tang, R., Ma, Y., Yuan, X.: Learning to reconstruct 3D non-cuboid room layout from a single RGB image. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp. 2534–2543 (2022)

    Google Scholar 

  38. Yang, H., Zhang, H.: Efficient 3D room shape recovery from a single panorama. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5422–5430 (2016)

    Google Scholar 

  39. Yang, S.T., Wang, F.E., Peng, C.H., Wonka, P., Sun, M., Chu, H.K.: Dula-net: a dual-projection network for estimating room layouts from a single RGB panorama. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3363–3372 (2019)

    Google Scholar 

  40. Yang, Y., Jin, S., Liu, R., Bing Kang, S., Yu, J.: Automatic 3d indoor scene modeling from single panorama. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3926–3934 (2018)

    Google Scholar 

  41. Yu, F., Koltun, V., Funkhouser, T.: Dilated residual networks. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 636–644 (2017)

    Google Scholar 

  42. Zeng, W., Karaoglu, S., Gevers, T.: Joint 3D layout and depth prediction from a single indoor panorama image. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12361, pp. 666–682. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58517-4_39

    Chapter  Google Scholar 

  43. Zhang, Y., Song, S., Tan, P., Xiao, J.: PanoContext: a whole-room 3D context model for panoramic scene understanding. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8694, pp. 668–686. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10599-4_43

    Chapter  Google Scholar 

  44. Zhao, H., Lu, M., Yao, A., Guo, Y., Chen, Y., Zhang, L.: Physics inspired optimization on semantic transfer features: an alternative method for room layout estimation. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 870–878 (2017)

    Google Scholar 

  45. Zhao, Y., Zhu, S.C.: Scene parsing by integrating function, geometry and appearance models. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3119–3126 (2013)

    Google Scholar 

  46. Zou, C., Colburn, A., Shan, Q., Hoiem, D.: Layoutnet: reconstructing the 3D room layout from a single RGB image. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2051–2059 (2018)

    Google Scholar 

  47. Zou, C., et al.: Manhattan room layout reconstruction from a single \(360^{\circ }\) image: a comparative study of state-of-the-art methods. Int. J. Comput. Vision (IJCV) 129(5), 1410–1431 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Funds of China (No. 62088102, 62021002) and ByteDance Research Collaboration Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yue Gao .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 17241 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhao, Y., Wen, C., Xue, Z., Gao, Y. (2022). 3D Room Layout Estimation from a Cubemap of Panorama Image via Deep Manhattan Hough Transform. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13661. Springer, Cham. https://doi.org/10.1007/978-3-031-19769-7_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19769-7_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19768-0

  • Online ISBN: 978-3-031-19769-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics