Abstract
In this work, we tackle the task of estimating the 6D pose of an object from point cloud data. While recent learning-based approaches to addressing this task have shown great success on synthetic datasets, we have observed them to fail in the presence of real-world data. We thus analyze the causes of these failures, which we trace back to the difference between the feature distributions of the source and target point clouds, and the sensitivity of the widely-used SVD-based loss function to the range of rotation between the two point clouds. We address the first challenge by introducing a new normalization strategy, Match Normalization, and the second via the use of a loss function based on the negative log likelihood of point correspondences. Our two contributions are general and can be applied to many existing learning-based 3D object registration frameworks, which we illustrate by implementing them in two of them, DCP and IDAM. Our experiments on the real-scene TUD-L [26], LINEMOD [23] and Occluded-LINEMOD [7] datasets evidence the benefits of our strategies. They allow for the first time learning-based 3D object registration methods to achieve meaningful results on real-world data. We therefore expect them to be key to the future development of point cloud registration methods. Our source code can be found at https://github.com/Dangzheng/MatchNorm.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Agamennoni, G., Fontana, S., Siegwart, R.Y., Sorrenti, D.G.: Point clouds registration with probabilistic data association. In: 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 4092–4098. IEEE (2016)
Aiger, D., Mitra, N.J., Cohen-Or, D.: 4-points congruent sets for robust pairwise surface registration. In: ACM SIGGRAPH 2008 papers, pp. 1–10 (2008)
Aoki, Y., Goforth, H., Srivatsan, R.A., Lucey, S.: Pointnetlk: robust & efficient point cloud registration using pointnet. In: Conference on Computer Vision and Pattern Recognition, Long Beach, California, pp. 7163–7172 (2019)
Atzmon, M., Maron, H., Lipman, Y.: Point convolutional neural networks by extension operators. ACM Trans. Graph. (TOG) (2018)
Besl, P., Mckay, N.: A method for registration of 3D shapes. IEEE Trans. Pattern Anal. Mach. Intell. 14(2), 239–256 (1992)
Bouaziz, S., Tagliasacchi, A., Pauly, M.: Sparse iterative closest point. In: Computer Graphics Forum, vol. 32, pp. 113–123. Wiley Online Library, Hoboken (2013)
Brachmann, E., Krull, A., Michel, F., Gumhold, S., Shotton, J., Rother, C.: Learning 6D object pose estimation Using 3D object coordinates. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8690, pp. 536–551. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10605-2_35
Brachmann, E., Michel, F., Krull, A., Yang, M.Y., Gumhold, S., et al.: Uncertainty-driven 6D pose estimation of objects and scenes from a single RGB image. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3364–3372 (2016)
Bronstein, A.M., Bronstein, M.M.: Regularized partial matching of rigid shapes. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008. LNCS, vol. 5303, pp. 143–154. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88688-4_11
Bronstein, A.M., Bronstein, M.M., Bruckstein, A.M., Kimmel, R.: Partial similarity of objects, or how to compare a centaur to a horse. Int. J. Comput. Vision 84(2), 163–183 (2009)
Cao, A.Q., Puy, G., Boulch, A., Marlet, R.: Pcam: product of cross-attention matrices for rigid registration of point clouds. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 13229–13238 (2021)
Choy, C., Dong, W., Koltun, V.: Deep global registration. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2020)
Choy, C., Park, J., Koltun, V.: Fully convolutional geometric features. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 8958–8966 (2019)
Dang, Z., Moo Yi, K., Hu, Y., Wang, F., Fua, P., Salzmann, M.: Eigendecomposition-free training of deep networks with zero eigenvalue-based losses. In: European Conference on Computer Vision, Munich, Germany, pp. 768–783 (2018)
Deng, H., Birdal, T., Ilic, S.: Ppf-foldnet: unsupervised learning of rotation invariant 3D local descriptors. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 602–618 (2018)
Deng, H., Birdal, T., Ilic, S.: Ppfnet: global context aware local features for robust 3D point matching. In: Conference on Computer Vision and Pattern Recognition, Salt Lake City, Utah, pp. 195–205 (2018)
Drost, B., Ulrich, M., Bergmann, P., Hartinger, P., Steger, C.: Introducing mvtec itodd-a dataset for 3D object recognition in industry. In: Proceedings of the IEEE International Conference on Computer Vision Workshops, Venice, Italy, pp. 2200–2208 (2017)
Drost, B., Ulrich, M., Navab, N., Ilic, S.: Model globally, match locally: efficient and robust 3D object recognition. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 998–1005 (2010)
Fitzgibbon, A.W.: Robust registration of 2D and 3D point sets. Image Vision Comput. 21(13–14), 1145–1153 (2003)
Gelfand, N., Mitra, N.J., Guibas, L.J., Pottmann, H.: Robust global registration. In: Symposium on geometry processing, Vienna, Austria, p. 5 (2005)
Gower, J.C.: Generalized procrustes analysis. Psychometrika 40(1), 33–51 (1975)
Hähnel, D., Burgard, W.: Probabilistic matching for 3D scan registration. In: Proceedings of the VDI-Conference Robotik, vol. 2002. Citeseer (2002)
Hinterstoisser, S., et al.: Model based training, detection and pose estimation of texture-less 3D objects in heavily cluttered scenes. In: Lee, K.M., Matsushita, Y., Rehg, J.M., Hu, Z. (eds.) ACCV 2012. LNCS, vol. 7724, pp. 548–562. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37331-2_42
Hinzmann, T., et al.: Collaborative 3D reconstruction using heterogeneous UAVs: system and experiments. In: Kulić, D., Nakamura, Y., Khatib, O., Venture, G. (eds.) ISER 2016. SPAR, vol. 1, pp. 43–56. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-50115-4_5
Hodaň, T., Matas, J., Obdržálek, Š: On evaluation of 6D object pose estimation. In: Hua, G., Jégou, H. (eds.) ECCV 2016. LNCS, vol. 9915, pp. 606–619. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-49409-8_52
Hodan, T., et al.: Bop: benchmark for 6D object pose estimation. In: European Conference on Computer Vision, Munich, Germany, pp. 19–34 (2018)
Huang, S., Gojcic, Z., Usvyatsov, M., Wieser, A., Schindler, K.: Predator: registration of 3D point clouds with low overlap. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4267–4276 (2021)
Ionescu, C., Vantzos, O., Sminchisescu, C.: Matrix backpropagation for deep networks with structured layers. In: Conference on Computer Vision and Pattern Recognition, Boston, MA, USA (2015)
Izatt, G., Dai, H., Tedrake, R.: Globally optimal object pose estimation in point clouds with mixed-integer programming. In: Amato, N.M., Hager, G., Thomas, S., Torres-Torriti, M. (eds.) Robotics Research. SPAR, vol. 10, pp. 695–710. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-28619-4_49
Johnson, A.E., Hebert, M.: Using spin images for efficient object recognition in cluttered 3d scenes. TPAMI 21(5), 433–449 (1999)
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: International Conference on Learning Representations, San Diego, CA, USA (2015)
Labbé, Y., Carpentier, J., Aubry, M., Sivic, J.: CosyPose: consistent multi-view multi-object 6D pose estimation. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12362, pp. 574–591. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58520-4_34
Le, H.M., Do, T.T., Hoang, T., Cheung, N.M.: Sdrsac: semidefinite-based randomized approach for robust point cloud registration without correspondences. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 124–133 (2019)
Li, J., Zhang, C., Xu, Z., Zhou, H., Zhang, C.: Iterative distance-aware similarity matrix convolution with mutual-supervised point elimination for efficient point cloud registration. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12369, pp. 378–394. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58586-0_23
Li, Y., Bu, R., Sun, M., Wu, W., Di, X., Chen, B.: Pointcnn: convolution on x-transformed points. In: Advances in Neural Information Processing Systems, Montréal, Quebec, Canada, pp. 820–830 (2018)
Li, Y., Wang, G., Ji, X., Xiang, Y., Fox, D.: DeepIM: deep iterative matching for 6D pose estimation. In: European Conference on Computer Vision, Munich, Germany, pp. 683–698 (2018)
Litany, O., Bronstein, A.M., Bronstein, M.M.: Putting the pieces together: regularized multi-part shape matching. In: Fusiello, A., Murino, V., Cucchiara, R. (eds.) ECCV 2012. LNCS, vol. 7583, pp. 1–11. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33863-2_1
Lucas, B.D., Kanade, T., et al.: An iterative image registration technique with an application to stereo vision. In: International Joint Conference on Artificial Intelligence. Vancouver, British Columb (1981)
Maron, H., Dym, N., Kezurer, I., Kovalsky, S., Lipman, Y.: Point registration via efficient convex relaxation. ACM Trans. Graph. (TOG) 35(4), 1–12 (2016)
Mellado, N., Aiger, D., Mitra, N.J.: Super 4 pcs fast global pointcloud registration via smart indexing. In: Computer Graphics Forum, vol. 33, pp. 205–215. Wiley Online Library (2014)
Mohamad, M., Ahmed, M.T., Rappaport, D., Greenspan, M.: Super generalized 4pcs for 3D registration. In: 2015 International Conference on 3D Vision, pp. 598–606. IEEE (2015)
Park, K., Patten, T., Vincze, M.: Pix2pose: pixel-wise coordinate regression of objects for 6D pose estimation. In: International Conference on Computer Vision, Seoul, Korea, pp. 7668–7677 (2019)
Paszke, A., et al.: Automatic differentiation in pytorch. In: International Conference on Learning Representations, Toulon, France (2017)
Peng, S., Liu, Y., Huang, Q., Zhou, X., Bao, H.: PVNet: pixel-wise voting network for 6DoF pose estimation. In: Conference on Computer Vision and Pattern Recognition, Long Beach, California, pp. 4561–4570 (2019)
Pomerleau, F., Colas, F., Siegwart, R., et al.: A review of point cloud registration algorithms for mobile robotics. Found. Trends® Rob. 4(1), 1–104 (2015)
Qi, C., Su, H., Mo, K., Guibas, L.: Pointnet: deep learning on point sets for 3D classification and segmentation. In: Conference on Computer Vision and Pattern Recognition, Honolulu, Hawaii (2017)
Qi, C., Yi, L., Su, H., Guibas, L.: Pointnet++: deep hierarchical feature learning on point sets in a metric space. In: Advances in Neural Information Processing Systems, Long Beach, California, United States (2017)
Rad, M., Lepetit, V.: Bb8: a scalable, accurate, robust to partial occlusion method for predicting the 3D poses of challenging objects without using depth. In: International Conference on Computer Vision, Venice, Italy, pp. 3828–3836 (2017)
Raposo, C., Barreto, J.P.: Using 2 point+ normal sets for fast registration of point clouds with small overlap. In: 2017 IEEE International Conference on Robotics and Automation (ICRA), pp. 5652–5658. IEEE (2017)
Rosen, D.M., Carlone, L., Bandeira, A.S., Leonard, J.J.: Se-sync: a certifiably correct algorithm for synchronization over the special euclidean group. Int. J. Rob. Res. 38(2–3), 95–125 (2019)
Rusinkiewicz, S., Levoy, M.: Efficient variants of the icp algorithm. In: Proceedings Third International Conference on 3-D Digital Imaging and Modeling, pp. 145–152. IEEE, Quebec City (2001)
Rusu, R.B., Blodow, N., Beetz, M.: Fast point feature histograms (fpfh) for 3D registration. In: International Conference on Robotics and Automation, pp. 3212–3217. IEEE, Kobe (2009)
Rusu, R.B., Blodow, N., Marton, Z.C., Beetz, M.: Aligning point cloud views using persistent feature histograms. In: International Conference on Intelligent Robots and Systems, pp. 3384–3391. IEEE, Nice (2008)
Sarlin, P.E., DeTone, D., Malisiewicz, T., Rabinovich, A.: Superglue: learning feature matching with graph neural networks. In: Conference on Computer Vision and Pattern Recognition. IEEE, Long Beach (2019)
Segal, A., Haehnel, D., Thrun, S.: Generalized-icp. In: In Robotics: Science and Systems, Cambridge (2009)
Su, H., et al.: Splatnet: sparse lattice networks for point cloud processing. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2530–2539 (2018)
Sundermeyer, M., Marton, Z.C., Durner, M., Brucker, M., Triebel, R.: Implicit 3D orientation learning for 6D object detection from RGB images. In: European Conference on Computer Vision, Munich, Germany, pp. 699–715 (2018)
Tremblay, J., To, T., Sundaralingam, B., Xiang, Y., Fox, D., Birchfield, S.: Deep object pose estimation for semantic robotic grasping of household objects. arXiv preprint arXiv:1809.10790 (2018)
Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, Long Beach, California, United States, pp. 5998–6008 (2017)
Vidal, J., Lin, C.Y., Lladó, X., Martí, R.: A method for 6D pose estimation of free-form rigid objects using point pair features on range data. Sensors 18(8), 2678 (2018)
Wang, C., et al.: Densefusion: 6D object pose estimation by iterative dense fusion. In: Conference on Computer Vision and Pattern Recognition, Long Beach, California, pp. 3343–3352 (2019)
Wang, H., Sridhar, S., Huang, J., Valentin, J., Song, S., Guibas, L.J.: Normalized object coordinate space for category-level 6D object pose and size estimation. In: International Conference on Computer Vision, Seoul, Korea, pp. 2642–2651 (2019)
Wang, W., Dang, Z., Hu, Y., Fua, P., Salzmann, M.: Backpropagation-friendly eigendecomposition. In: Advances in Neural Information Processing Systems, Vancouver, British Columbia, Canada, pp. 3156–3164 (2019)
Wang, Y., Sun, Y., Liu, Z., Sarma, S., Bronstein, M., Solomon, J.: Dynamic graph cnn for learning on point clouds. ACM Trans. Graph. (TOG) (2019)
Wang, Y., Solomon, J.M.: Deep closest point: learning representations for point cloud registration. In: International Conference on Computer Vision, Seoul, Korea, pp. 3523–3532 (2019)
Wang, Y., Solomon, J.M.: Prnet: Self-supervised learning for partial-to-partial registration. In: Advances in Neural Information Processing Systems, Vancouver, British Columbia, Canada, pp. 8812–8824 (2019)
Xiang, Y., Schmidt, T., Narayanan, V., Fox, D.: Posecnn: a convolutional neural network for 6D object pose estimation in cluttered scenes. In: Robotics: Science and Systems Conference, Pittsburgh, PA, USA (2018)
Yang, H., Carlone, L.: A polynomial-time solution for robust registration with extreme outlier rates. In: Robotics: Science and Systems Conference, Freiburg im Breisgau, Germany (2019)
Yang, H., Shi, J., Carlone, L.: Teaser: fast and certifiable point cloud registration. arXiv Preprint (2020)
Yang, J., Li, H., Campbell, D., Jia, Y.: Go-icp: a globally optimal solution to 3D icp point-set registration. TPAMI 38(11), 2241–2254 (2015)
Yew, Z.J., Lee, G.H.: Rpm-net: robust point matching using learned features. In: Conference on Computer Vision and Pattern Recognition. Online (2020)
Yuan, W., Eckart, B., Kim, K., Jampani, V., Fox, D., Kautz, J.: DeepGMR: learning latent gaussian mixture models for registration. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12350, pp. 733–750. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58558-7_43
Zaheer, M., Kottur, S., Ravanbakhsh, S., Poczos, B., Salakhutdinov, R.R., Smola, A.J.: Deep sets. In: Advances in Neural Information Processing Systems, Long Beach, California, United States, pp. 3391–3401 (2017)
Zakharov, S., Shugurov, I., Ilic, S.: DPOD: 6D pose object detector and refiner. In: International Conference on Computer Vision, Seoul, Korea (2019)
Zhou, Q.-Y., Park, J., Koltun, V.: Fast global registration. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 766–782. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_47
Zhou, Q.Y., Park, J., Koltun, V.: Open3D: a modern library for 3D data processing. arXiv Preprint (2018)
Acknowledgements
Zheng Dang would like to thank to H. Chen for the highly-valuable discussions and for her encouragement. This work was funded in part by the Swiss Innovation Agency (Innosuisse).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Dang, Z., Wang, L., Guo, Y., Salzmann, M. (2022). Learning-Based Point Cloud Registration for 6D Object Pose Estimation in the Real World. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13661. Springer, Cham. https://doi.org/10.1007/978-3-031-19769-7_2
Download citation
DOI: https://doi.org/10.1007/978-3-031-19769-7_2
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-19768-0
Online ISBN: 978-3-031-19769-7
eBook Packages: Computer ScienceComputer Science (R0)