Abstract
We propose a novel architecture for depth estimation from a single image. The architecture itself is based on the popular encoder-decoder architecture that is frequently used as a starting point for all dense regression tasks. We build on AdaBins which estimates a global distribution of depth values for the input image and evolve the architecture in two ways. First, instead of predicting global depth distributions, we predict depth distributions of local neighborhoods at every pixel. Second, instead of predicting depth distributions only towards the end of the decoder, we involve all layers of the decoder. We call this new architecture LocalBins. Our results demonstrate a clear improvement over the state-of-the-art in all metrics on the NYU-Depth V2 dataset. Code and pretrained models will be made publicly available (https://github.com/shariqfarooq123/LocalBins).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Akada, H., Bhat, S.F., Alhashim, I., Wonka, P.: Self-supervised learning of domain invariant features for depth estimation. In: IEEE/CVF Winter Conference on Applications of Computer Vision, WACV 2022, Waikoloa, HI, USA, 3–8 January 2022, pp. 997–1007. IEEE (2022). https://doi.org/10.1109/WACV51458.2022.00107
Alhashim, I., Wonka, P.: High quality monocular depth estimation via transfer learning. CoRR abs/1812.11941 (2018). http://arxiv.org/abs/1812.11941
Atapour-Abarghouei, A., Breckon, T.P.: Real-time monocular depth estimation using synthetic data with domain adaptation via image style transfer. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2800–2810 (2018)
Bhat, S.F., Alhashim, I., Wonka, P.: AdaBins: depth estimation using adaptive bins. In: 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4008–4017. IEEE Computer Society, Los Alamitos, CA, USA, June 2021. https://doi.org/10.1109/CVPR46437.2021.00400
Casser, V., Pirk, S., Mahjourian, R., Angelova, A.: Unsupervised monocular depth and ego-motion learning with structure and semantics. In: CVPR Workshop on Visual Odometry and Computer Vision Applications Based on Location Cues (VOCVALC) (2019)
Chen, X., Chen, X., Zha, Z.J.: Structure-aware residual pyramid network for monocular depth estimation. In: Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence, IJCAI-19, pp. 694–700. International Joint Conferences on Artificial Intelligence Organization, July 2019. https://doi.org/10.24963/ijcai.2019/98
Chen, Y.C., Lin, Y.Y., Yang, M.H., Huang, J.B.: CrDoCo: pixel-level domain transfer with cross-domain consistency. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2019)
Eigen, D., Puhrsch, C., Fergus, R.: Depth map prediction from a single image using a multi-scale deep network. In: NIPS (2014)
Fu, H., Gong, M., Wang, C., Batmanghelich, N., Tao, D.: Deep ordinal regression network for monocular depth estimation. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2002–2011 (2018)
Godard, C., Aodha, O.M., Brostow, G.J.: Unsupervised monocular depth estimation with left-right consistency. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6602–6611 (2017)
Godard, C., Aodha, O.M., Brostow, G.J.: Digging into self-supervised monocular depth estimation. CoRR abs/1806.01260 (2018)
Gordon, A., Li, H., Jonschkowski, R., Angelova, A.: Depth from videos in the wild: unsupervised monocular depth learning from unknown cameras. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), October 2019
Hao, Z., Li, Y., You, S., Lu, F.: Detail preserving depth estimation from a single image using attention guided networks. In: 2018 International Conference on 3D Vision (3DV), pp. 304–313 (2018)
He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp. 2980–2988 (2017). https://doi.org/10.1109/ICCV.2017.322
Hu, J., Ozay, M., Zhang, Y., Okatani, T.: Revisiting single image depth estimation: toward higher resolution maps with accurate object boundaries. In: 2019 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 1043–1051 (2018)
Huynh, L., Nguyen-Ha, P., Matas, J., Rahtu, E., Heikkila, J.: Guiding monocular depth estimation using depth-attention volume. arXiv preprint arXiv:2004.02760 (2020). https://doi.org/10.1007/978-3-030-58574-7_35
Kim, D., Ga, W., Ahn, P., Joo, D., Chun, S., Kim, J.: Global-local path networks for monocular depth estimation with vertical cutdepth. arXiv preprint arXiv:2201.07436 (2022)
Koch, T., Liebel, L., Fraundorfer, F., Körner, M.: Evaluation of CNN-based single-image depth estimation methods. In: Leal-Taixé, L., Roth, S. (eds.) ECCV 2018. LNCS, vol. 11131, pp. 331–348. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11015-4_25
Laina, I., Rupprecht, C., Belagiannis, V., Tombari, F., Navab, N.: Deeper depth prediction with fully convolutional residual networks. In: 2016 Fourth International Conference on 3D Vision (3DV), pp. 239–248 (2016)
Lee, J.H., Han, M.K., Ko, D.W., Suh, I.H.: From big to small: multi-scale local planar guidance for monocular depth estimation. arXiv preprint arXiv:1907.10326 (2019)
Lee, W., Park, N., Woo, W.: Depth-assisted real-time 3D object detection for augmented reality. In: ICAT 2011, vol. 2, pp. 126–132 (2011)
Li, H., Gordon, A., Zhao, H., Casser, V., Angelova, A.: Unsupervised monocular depth learning in dynamic scenes. arXiv preprint arXiv:2010.16404 (2020)
Li, Z., Snavely, N.: MegaDepth: learning single-view depth prediction from internet photos. In: Computer Vision and Pattern Recognition (CVPR) (2018)
Loshchilov, I., Hutter, F.: Decoupled weight decay regularization. In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, 6–9 May 2019. OpenReview.net (2019). https://openreview.net/forum?id=Bkg6RiCqY7
Paszke, A., et al.: PyTorch: an imperative style, high-performance deep learning library. In: Wallach, H., Larochelle, H., Beygelzimer, A., d’Alché-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems, vol. 32, pp. 8026–8037. Curran Associates, Inc. (2019). https://proceedings.neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
Ramamonjisoa, M., Lepetit, V.: SharpNet: fast and accurate recovery of occluding contours in monocular depth estimation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) Workshops, October 2019
Ranftl, R., Bochkovskiy, A., Koltun, V.: Vision transformers for dense prediction. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 12179–12188, October 2021
Ranftl, R., Lasinger, K., Hafner, D., Schindler, K., Koltun, V.: Towards robust monocular depth estimation: mixing datasets for zero-shot cross-dataset transfer. IEEE Trans. Patt. Anal. Mach. Intell. (TPAMI) (2020)
Silberman, N., Hoiem, D., Kohli, P., Fergus, R.: Indoor segmentation and support inference from RGBD images. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7576, pp. 746–760. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33715-4_54
Song, S., Lichtenberg, S.P., Xiao, J.: Sun RGB-D: A RGB-D scene understanding benchmark suite. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 567–576 (2015). https://doi.org/10.1109/CVPR.2015.7298655
Tonioni, A., Poggi, M., Mattoccia, S., di Stefano, L.: Unsupervised domain adaptation for depth prediction from images. CoRR abs/1909.03943 (2019). http://arxiv.org/abs/1909.03943
Watson, J., Mac Aodha, O., Prisacariu, V., Brostow, G., Firman, M.: The temporal opportunist: self-supervised multi-frame monocular depth. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1164–1174, June 2021
Xie, J., Girshick, R., Farhadi, A.: Deep3D: fully automatic 2D-to-3D video conversion with deep convolutional neural networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 842–857. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_51
Xu, D., Ricci, E., Ouyang, W., Wang, X., Sebe, N.: Multi-scale continuous CRFs as sequential deep networks for monocular depth estimation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5354–5362 (2017)
Xu, D., Wang, W., Tang, H., Liu, H.W., Sebe, N., Ricci, E.: Structured attention guided convolutional neural fields for monocular depth estimation. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3917–3925 (2018)
Yin, W., Liu, Y., Shen, C., Yan, Y.: Enforcing geometric constraints of virtual normal for depth prediction. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), October 2019
Yuan, W., Gu, X., Dai, Z., Zhu, S., Tan, P.: NeW CRFs: neural window fully-connected CRFs for monocular depth estimation. arXiv e-prints arXiv:2203.01502, March 2022
Zhao, S., Fu, H., Gong, M., Tao, D.: Geometry-aware symmetric domain adaptation for monocular depth estimation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9788–9798 (2019)
Zhao, Y., Kong, S., Shin, D., Fowlkes, C.: Domain decluttering: simplifying images to mitigate synthetic-real domain shift and improve depth estimation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), June 2020
Zhou, H., Greenwood, D., Taylor, S.: Self-supervised monocular depth estimation with internal feature fusion. In: British Machine Vision Conference (BMVC) (2021)
Zhou, T., Brown, M.R., Snavely, N., Lowe, D.G.: Unsupervised learning of depth and ego-motion from video. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6612–6619 (2017)
Acknowledgements
This work was supported by the KAUST Office of Sponsored Research (OSR) under Award No. OSR-CRG2018-3730.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Bhat, S.F., Alhashim, I., Wonka, P. (2022). LocalBins: Improving Depth Estimation by Learning Local Distributions. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13661. Springer, Cham. https://doi.org/10.1007/978-3-031-19769-7_28
Download citation
DOI: https://doi.org/10.1007/978-3-031-19769-7_28
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-19768-0
Online ISBN: 978-3-031-19769-7
eBook Packages: Computer ScienceComputer Science (R0)