Abstract
Reconstructing a 3D shape based on a single sketch image is challenging due to the large domain gap between a sparse, irregular sketch and a regular, dense 3D shape. Existing works try to employ the global feature extracted from sketch to directly predict the 3D coordinates, but they usually suffer from losing fine details that are not faithful to the input sketch. Through analyzing the 3D-to-2D projection process, we notice that the density map that characterizes the distribution of 2D point clouds (i.e., the probability of points projected at each location of the projection plane) can be used as a proxy to facilitate the reconstruction process. To this end, we first translate a sketch via an image translation network to a more informative 2D representation that can be used to generate a density map. Next, a 3D point cloud is reconstructed via a two-stage probabilistic sampling process: first recovering the 2D points (i.e., the x and y coordinates) by sampling the density map; and then predicting the depth (i.e., the z coordinate) by sampling the depth values at the ray determined by each 2D point. Extensive experiments are conducted, and both quantitative and qualitative results show that our proposed approach significantly outperforms other baseline methods.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
\(x=\frac{2u}{\mathcal {W}-1}-1\), \(y=\frac{2v}{\mathcal {W}-1}-1\), where \(u=0,1,...,\mathcal {W}-1\), \(v=0,1,...,\mathcal {H}-1\).
References
Bian, W., Wang, Z., Li, K., Prisacariu, V.A.: Ray-ONet: efficient 3D reconstruction from a single RGB image. In: British Machine Vision Conference (BMVC) (2021)
Chang, A.X., et al.: ShapeNet: an information-rich 3D model repository. arXiv preprint arXiv:1512.03012 (2015)
Choy, C.B., Xu, D., Gwak, J.Y., Chen, K., Savarese, S.: 3D-R2N2: a unified approach for single and multi-view 3D object reconstruction. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 628–644. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46484-8_38
Delanoy, J., Aubry, M., Isola, P., Efros, A.A., Bousseau, A.: 3D sketching using multi-view deep volumetric prediction. In: Proceedings of the ACM on Computer Graphics and Interactive Techniques(PACMCGIT) 1(1), 1–22 (2018)
Eitz, M., Hays, J., Alexa, M.: How do humans sketch objects? ACM TOG 31(4), 44:1–44:10 (2012)
Fan, H., Su, H., Guibas, L.J.: A point set generation network for 3D object reconstruction from a single image. In: CVPR (2017)
Gkioxari, G., Malik, J., Johnson, J.: Mesh R-CNN. In: ICCV (2019)
Goodfellow, I., et al.: Generative adversarial nets. In: NeurIPS (2014)
Guillard, B., Remelli, E., Yvernay, P., Fua, P.: Sketch2Mesh: reconstructing and editing 3D shapes from sketches. In: ICCV (2021)
Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: CVPR (2017)
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization (2015)
Li, C., Pan, H., Liu, Y., Tong, X., Sheffer, A., Wang, W.: BendSketch: modeling freeform surfaces through 2D sketching. ACM TOG 36(4), 1–14 (2017)
Li, C., Pan, H., Liu, Y., Tong, X., Sheffer, A., Wang, W.: Robust flow-guided neural prediction for sketch-based freeform surface modeling. ACM TOG 37(6), 1–12 (2018)
Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: CVPR (2017)
Lun, Z., Gadelha, M., Kalogerakis, E., Maji, S., Wang, R.: 3D shape reconstruction from sketches via multi-view convolutional networks. In: 3DV (2017)
Mescheder, L., Oechsle, M., Niemeyer, M., Nowozin, S., Geiger, A.: Occupancy networks: learning 3D reconstruction in function space. In: CVPR (2019)
Mirza, M., Osindero, S.: Conditional generative adversarial nets. arXiv preprint arXiv:1411.1784 (2014)
Nguyen, A.D., Choi, S., Kim, W., Lee, S.: GraphX-convolution for point cloud deformation in 2D-to-3D conversion. In: ICCV (2019)
Popov, S., Bauszat, P., Ferrari, V.: CoReNet: coherent 3D scene reconstruction from a single RGB image. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12347, pp. 366–383. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58536-5_22
Sangkloy, P., Burnell, N., Ham, C., Hays, J.: The sketchy database: learning to retrieve badly drawn bunnies. ACM TOG 35(4), 1–12 (2016)
Shin, D., Fowlkes, C.C., Hoiem, D.: Pixels, voxels, and views: a study of shape representations for single view 3D object shape prediction. In: CVPR (2018)
Wang, J., Lin, J., Yu, Q., Liu, R., Chen, Y., Yu, S.X.: 3D shape reconstruction from free-hand sketches. arXiv preprint arXiv:2006.09694 (2020)
Wang, L., Qian, C., Wang, J., Fang, Y.: Unsupervised learning of 3D model reconstruction from hand-drawn sketches. In: ACM MM (2018)
Wang, M., Wang, L., Fang, Y.: 3DensiNet: a robust neural network architecture towards 3D volumetric object prediction from 2D image. In: ACM MM (2017)
Wang, N., Zhang, Y., Li, Z., Fu, Y., Liu, W., Jiang, Y.G.: Pixel2Mesh: generating 3D mesh models from single RGB images. In: ECCV (2018)
Wu, J., Wang, Y., Xue, T., Sun, X., Freeman, B., Tenenbaum, J.: MarrNet: 3D shape reconstruction via 2.5D sketches. In: NeurIPS (2017)
Xie, H., Yao, H., Sun, X., Zhou, S., Zhang, S.: Pix2Vox: Context-aware 3D reconstruction from single and multi-view images. In: ICCV (2019)
Xie, H., Yao, H., Zhang, S., Zhou, S., Sun, W.: Pix2vox++: multi-scale context-aware 3D object reconstruction from single and multiple images. IJCV 128(12), 2919–2935 (2020). https://doi.org/10.1007/s11263-020-01347-6
Xu, B., Chang, W., Sheffer, A., Bousseau, A., McCrae, J., Singh, K.: True2Form: 3D curve networks from 2D sketches via selective regularization. ACM TOG 33(4), 1–13 (2014)
Xu, Q., Wang, W., Ceylan, D., Mech, R., Neumann, U.: DISN: deep implicit surface network for high-quality single-view 3D reconstruction. In: NeurIPS (2019)
Zhang, S.H., Guo, Y.C., Gu, Q.W.: Sketch2Model: view-aware 3D modeling from single free-hand sketches. In: CVPR (2021)
Zhong, Y., Gryaditskaya, Y., Zhang, H., Song, Y.Z.: Deep sketch-based modeling: tips and tricks. In: 3DV (2020)
Zhong, Y., Qi, Y., Gryaditskaya, Y., Zhang, H., Song, Y.Z.: Towards practical sketch-based 3d shape generation: the role of professional sketches. IEEE Trans. Circ. Syst. Video Technol. (T-CSVT) 31(9), 3518–3528 (2020)
Acknowledgement
This work is supported by the National Natural Science Foundation of China (No. 62002012 and No. 62132001) and Key Research and Development Program of Guangdong Province, China (No. 2019B010154003).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Gao, C., Yu, Q., Sheng, L., Song, YZ., Xu, D. (2022). SketchSampler: Sketch-Based 3D Reconstruction via View-Dependent Depth Sampling. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13661. Springer, Cham. https://doi.org/10.1007/978-3-031-19769-7_27
Download citation
DOI: https://doi.org/10.1007/978-3-031-19769-7_27
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-19768-0
Online ISBN: 978-3-031-19769-7
eBook Packages: Computer ScienceComputer Science (R0)