Abstract
Linear perspective cues deriving from regularities of the built environment can be used to recalibrate both intrinsic and extrinsic camera parameters online, but these estimates can be unreliable due to irregularities in the scene, uncertainties in line segment estimation and background clutter. Here we address this challenge through four initiatives. First, we use the PanoContext panoramic image dataset [27] to curate a novel and realistic dataset of planar projections over a broad range of scenes, focal lengths and camera poses. Second, we use this novel dataset and the YorkUrbanDB [4] to systematically evaluate the linear perspective deviation measures frequently found in the literature and show that the choice of deviation measure and likelihood model has a huge impact on reliability. Third, we use these findings to create a novel system for online camera calibration we call \(f\textbf{R}\), and show that it outperforms the prior state of the art, substantially reducing error in estimated camera rotation and focal length. Our fourth contribution is a novel and efficient approach to estimating uncertainty that can dramatically improve online reliability for performance-critical applications by strategically selecting which frames to use for recalibration.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Almazan, E.J., Tal, R., Qian, Y., Elder, J.H.: MCMLSD: a dynamic programming approach to line segment detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2031–2039 (2017)
Collins, R.T., Weiss, R.S.: Vanishing point calculation as a statistical inference on the unit sphere. In: International Conference on Computer Vision, vol. 90, pp. 400–403. Citeseer (1990)
Coughlan, J.M., Yuille, A.L.: Manhattan world: compass direction from a single image by Bayesian inference. In: International Conference on Computer Vision, vol. 2, pp. 941–947. IEEE (1999)
Denis, P., Elder, J.H., Estrada, F.J.: Efficient edge-based methods for estimating manhattan frames in urban imagery. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008. LNCS, vol. 5303, pp. 197–210. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-88688-4_15
Deutscher, J., Isard, M., MacCormick, J.: Automatic camera calibration from a single manhattan image. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2353, pp. 175–188. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-47979-1_12
Faugeras, O.: Three-Dimensional Computer Vision: A Geometric Viewpoint. MIT Press, Cambridge (1993)
von Gioi, R.G., Jakubowicz, J., Morel, J.M., Randall, G.: Lsd: a fast line segment detector with a false detection control. IEEE Trans. Pattern Anal. Mach. Intell. 4, 722–732 (2008)
Hold-Geoffroy, Y., et al.: A perceptual measure for deep single image camera calibration. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2354–2363 (2018)
Košecká, J., Zhang, W.: Video compass. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) European Conference on Computer Vision, pp. 476–490. Springer, Berlin Heidelberg, Berlin, Heidelberg (2002)
Lee, D.C., Hebert, M., Kanade, T.: Geometric reasoning for single image structure recovery. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2136–2143. IEEE (2009)
Lee, J., Go, H., Lee, H., Cho, S., Sung, M., Kim, J.: CTRL-C: camera calibration transformer with line-classification. In: International Conference on Computer Vision, pp. 16228–16237 (2021)
Lee, J., Sung, M., Lee, H., Kim, J.: Neural geometric parser for single image camera calibration. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12357, pp. 541–557. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58610-2_32
Li, H., Chen, K., Kim, P., Yoon, K.J., Liu, Z., Joo, K., Liu, Y.H.: Learning icosahedral spherical probability map based on bingham mixture model for vanishing point estimation. In: International Conference on Computer Vision, pp. 5661–5670 (2021)
Li, H., Zhao, J., Bazin, J.C., Chen, W., Liu, Z., Liu, Y.H.: Quasi-globally optimal and efficient vanishing point estimation in Manhattan world. In: International Conference on Computer Vision, pp. 1646–1654 (2019)
Lin, Y., Pintea, S.L., van Gemert, J.C.: Deep hough-transform line priors. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12367, pp. 323–340. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58542-6_20
Rother, C.: A new approach to vanishing point detection in architectural environments. Image Vis. Comput. 20(9–10), 647–655 (2002)
Schindler, G., Dellaert, F.: Atlanta world: An expectation maximization framework for simultaneous low-level edge grouping and camera calibration in complex man-made environments. In: Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004. vol. 1, pp. I-I. IEEE (2004)
Simon, G., Fond, A., Berger, M.O.: A Simple and Effective Method to Detect Orthogonal Vanishing Points in Uncalibrated Images of Man-Made Environments. In: Bashford-Rogers, T., Santos, L.P. (eds.) EuroGraphics - Short Papers. The Eurographics Association (2016). https://doi.org/10.2312/egsh.20161008
Tal, R., Elder, J.H.: An accurate method for line detection and manhattan frame estimation. In: Park, J.-I., Kim, J. (eds.) ACCV 2012. LNCS, vol. 7729, pp. 580–593. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37484-5_47
Tardif, J.P.: Non-iterative approach for fast and accurate vanishing point detection. In: IEEE International Conference on Computer Vision, pp. 1250–1257. IEEE (2009)
Wildenauer, H., Hanbury, A.: Robust camera self-calibration from monocular images of Manhattan worlds. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2831–2838. IEEE (2012)
Wu, Z., Radke, R.: Keeping a pan-tilt-zoom camera calibrated. Pattern Analysis and Machine Intelligence, IEEE Transactions on 35(8), 1994–2007 (2013). https://doi.org/10.1109/TPAMI.2012.250
Xian, W., Li, Z., Fisher, M., Eisenmann, J., Shechtman, E., Snavely, N.: UprightNet: geometry-aware camera orientation estimation from single images. In: International Conference on Computer Vision, pp. 9974–9983 (2019)
Xiao, J., Ehinger, K.A., Oliva, A., Torralba, A.: Recognizing scene viewpoint using panoramic place representation. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2695–2702. IEEE (2012)
Xu, Y., Oh, S., Hoogs, A.: A minimum error vanishing point detection approach for uncalibrated monocular images of man-made environments. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1376–1383 (2013)
Xu, Z., Shin, B., Klette, R.: A statistical method for line segment detection. Comput. Vis. Image Underst. 138, 61–73 (2015)
Zhang, Y., Song, S., Tan, P., Xiao, J.: PanoContext: a whole-room 3D context model for panoramic scene, pp. 668–686 (2014)
Acknowledgement
This work was supported by the University of Toronto, NSERC, the Ontario Research Fund, the York University VISTA and Research Chair programs (Canada), and the Agency for Science, Technology and Research (A*STAR) under its RIE2020 Health and Biomedical Sciences (HBMS) Industry Alignment Fund Pre-Positioning (IAF-PP) Grant No. H20c6a0031 and AI3 HTPO Seed Fund (C211118014) (Singapore).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Qian, Y., Elder, J.H. (2022). A Reliable Online Method for Joint Estimation of Focal Length and Camera Rotation. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner, T. (eds) Computer Vision – ECCV 2022. ECCV 2022. Lecture Notes in Computer Science, vol 13661. Springer, Cham. https://doi.org/10.1007/978-3-031-19769-7_15
Download citation
DOI: https://doi.org/10.1007/978-3-031-19769-7_15
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-19768-0
Online ISBN: 978-3-031-19769-7
eBook Packages: Computer ScienceComputer Science (R0)