Skip to main content

Measuring Convergence Inertia: Online Learning in Self-adaptive Systems with Context Shifts

  • Conference paper
  • First Online:
Leveraging Applications of Formal Methods, Verification and Validation. Adaptation and Learning (ISoLA 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13703))

Included in the following conference series:

Abstract

To deal with situations not specifically designed for (unknown-unknowns), self-adaptive systems need to learn the best – or at least good enough – action to perform in each context faced during operation. An established solution for doing so is through the use of online learning. The complexity of online learning however increases in the presence of context shifts – which are typical in self-adaptive systems. In this paper, we (i) propose a new metric, convergence inertia, to assess the robustness of reinforcement learning policies against context shifts, and (ii) use it to assess the robustness of different policies within the family of multi-armed bandits (MAB) to context shifts. Through an experiment with a self-adaptation exemplar of a web server, we demonstrate that inertia and the accompanying interpretation of the unknown-unknowns problem is a viable way to inform the selection of online learning policies for self-adaptive systems, since it brings the influence of context shifts to the forefront. In our experiment, we found that non-stationary MAB policies are better suited to handling context shifts in terms of inertia, although stationary policies tend to perform well in terms of overall convergence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://github.com/EGAlberts/ISOLABandits/blob/main/ISOLA/_appendix.pdf.

References

  1. Alberts, E.G.: Adapting with Regret: Using Multi-armed Bandits with Self-adaptive Systems. Master’s thesis, University of Amsterdam (2022). https://scripties.uba.uva.nl/search?id=727497

  2. Auer, P., Cesa-Bianchi, N., Fischer, P.: Finite-time analysis of the multiarmed bandit problem. Mach. Learn. 47(2), 235–256 (2002). https://doi.org/10.1023/A:1013689704352

    Article  MATH  Google Scholar 

  3. Auer, P., Cesa-Bianchi, N., Freund, Y., Schapire, R.E.: The nonstochastic multiarmed bandit problem. SIAM J. Comput. 32(1), 48–77 (2002). https://doi.org/10.1137/S0097539701398375

    Article  MathSciNet  MATH  Google Scholar 

  4. Bubeck, S.: Regret analysis of stochastic and nonstochastic multi-armed bandit problems. Found. Trends Mach. Learn. 5(1), 1–122 (2012). https://doi.org/10.1561/2200000024

  5. Cabri, G., Capodieci, N.: Applying multi-armed bandit strategies to change of collaboration patterns at runtime. In: 2013 1st International Conference on Artificial Intelligence, Modelling and Simulation, pp. 151–156. IEEE, Kota Kinabalu (2013). https://doi.org/10.1109/AIMS.2013.31

  6. Cardozo, N., Dusparic, I.: Auto-cop: adaptation generation in context-oriented programming using reinforcement learning options. CoRR abs/2103.06757 (2021)

    Google Scholar 

  7. Gheibi, O., Weyns, D., Quin, F.: Applying machine learning in self-adaptive systems: a systematic literature review. ACM Trans. Auton. Adapt. Syst. 15(3), 1–37 (2021). https://doi.org/10.1145/3469440

    Article  Google Scholar 

  8. Kephart, J., Chess, D.: The vision of autonomic computing. Computer 36(1), 41–50 (2003)

    Article  MathSciNet  Google Scholar 

  9. Kim, D., Park, S.: Reinforcement learning-based dynamic adaptation planning method for architecture-based self-managed software. In: 2009 ICSE Workshop on Software Engineering for Adaptive and Self-Managing Systems, pp. 76–85 (2009). https://doi.org/10.1109/SEAMS.2009.5069076, iSSN: 2157–2321

  10. Kinneer, C., Coker, Z., Wang, J., Garlan, D., Goues, C.L.: Managing uncertainty in self-adaptive systems with plan reuse and stochastic search. In: Proceedings of the 13th International Conference on Software Engineering for Adaptive and Self-Managing Systems, pp. 40–50. ACM, Gothenburg (2018). https://doi.org/10.1145/3194133.3194145

  11. Kivinen, J., Szepesvári, C., Ukkonen, E., Zeugmann, T. (eds.): ALT 2011. LNCS (LNAI), vol. 6925. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24412-4

    Book  Google Scholar 

  12. Krupitzer, C., Roth, F.M., VanSyckel, S., Schiele, G., Becker, C.: A survey on engineering approaches for self-adaptive systems. Perv. Mob. Comput. 17, 184–206 (2015). https://doi.org/10.1016/j.pmcj.2014.09.009. Feb

    Article  Google Scholar 

  13. Lattimore, T., Szepesvári, C.: Bandit Algorithms, 1st edn. Cambridge University Press, Cambridge (2020). https://doi.org/10.1017/9781108571401

    Book  MATH  Google Scholar 

  14. de Lemos, R., et al.: Software engineering for self-adaptive systems: a second research roadmap. In: de Lemos, R., Giese, H., Müller, H.A., Shaw, M. (eds.) Software Engineering for Self-Adaptive Systems II. LNCS, vol. 7475, pp. 1–32. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-35813-5_1

    Chapter  Google Scholar 

  15. Li, L., Chu, W., Langford, J., Schapire, R.E.: A contextual-bandit approach to personalized news article recommendation. In: Proceedings of the 19th International Conference on World Wide Web - WWW 2010, p. 661 (2010). https://doi.org/10.1145/1772690.1772758, arXiv: 1003.0146

  16. Metzger, A., Kley, T., Palm, A.: Triggering proactive business process adaptations via online reinforcement learning. In: Fahland, D., Ghidini, C., Becker, J., Dumas, M. (eds.) BPM 2020. LNCS, vol. 12168, pp. 273–290. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58666-9_16

    Chapter  Google Scholar 

  17. Metzger, A., Quinton, C., Mann, Z.A., Baresi, L., Pohl, K.: Feature-model-guided online learning for self-adaptive systems, vol. 12571, pp. 269–286 (2020). https://doi.org/10.1007/978-3-030-65310-1_20, arXiv: 1907.09158

  18. Moreno, G.A., Schmerl, B., Garlan, D.: SWIM: an exemplar for evaluation and comparison of self-adaptation approaches for web applications. In: Proceedings of the 13th International Conference on Software Engineering for Adaptive and Self-Managing Systems, pp. 137–143. ACM, Gothenburg (2018). https://doi.org/10.1145/3194133.3194163

  19. Palm, A., Metzger, A., Pohl, K.: Online reinforcement learning for self-adaptive information systems. In: Dustdar, S., Yu, E., Salinesi, C., Rieu, D., Pant, V. (eds.) CAiSE 2020. LNCS, vol. 12127, pp. 169–184. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-49435-3_11

    Chapter  Google Scholar 

  20. Porter, B., Rodrigues Filho, R.: Distributed emergent software: assembling, perceiving and learning systems at scale. In: 2019 IEEE 13th International Conference on Self-Adaptive and Self-Organizing Systems (SASO), pp. 127–136 (2019). https://doi.org/10.1109/SASO.2019.00024, iSSN: 1949–3681

  21. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT press, Cambridge (2018)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilias Gerostathopoulos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Alberts, E., Gerostathopoulos, I. (2022). Measuring Convergence Inertia: Online Learning in Self-adaptive Systems with Context Shifts. In: Margaria, T., Steffen, B. (eds) Leveraging Applications of Formal Methods, Verification and Validation. Adaptation and Learning. ISoLA 2022. Lecture Notes in Computer Science, vol 13703. Springer, Cham. https://doi.org/10.1007/978-3-031-19759-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-19759-8_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-19758-1

  • Online ISBN: 978-3-031-19759-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics